
A Scalable Microservice-based
Open Source Platform

for Smart Cities

Arthur de Moura Del Esposte

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
for the Master degree in

Computer Science

Program: Computer Science
Advisor: Prof. Fabio Kon

During this work, the author was supported by CNPq. This research
is part of the INCT of the Future Internet for Smart Cities funded
by CNPq, proc. 465446/2014-0, CAPES proc. 88887.136422/2017-

00, and FAPESP, proc. 2014/50937-1 and 2015/24485-9.

São Paulo
April 1st, 2018

A Scalable Microservice-based
Open Source Platform

for Smart Cities

Arthur de Moura Del Esposte

This is the original version of the
thesis prepared by the candidate
Arthur de Moura Del Esposte, as

submitted to the Examining Committee.

I authorize the reproduction and total or partial disclosure of this work,
by any conventional or electronic means, for study and research purposes,
provided that the source is cited.

For all those who are always present at my side, in
my mind, or in my heart. Your lights have guided
me in this work and support me in everything else.

i

Acknowledgements

"Oh great ocean
Oh great sea

Run to the ocean
Run to the sea"

—
One Tree Hill - U2

Many people have influenced this work in multiple ways. My journey in the
accomplishment of this work began way before, when I left Brasilia and came to live
far from those who I love the most. There I was, making the hardest and wisest choice
I have ever made. Although the pain of distance was unremitting, it was accompanied
by a great excitement for new knowledge, new challenges, and new horizons. Now, at
the end of that journey, I have a great feeling of gratitude for all these people I have
been away from all this time, especially because they have faithfully followed me all
the way as the good family and friends they are.

First, I would like to thank my parents, Antônio César Del Esposte and Lucimar
de Moura Del Esposte, for all their understanding, support, dedication, trust, and
inspiration during this period. More than that, their immeasurable love are the
foundation and inspiration that guide me towards my goals. Indeed their lifelong
teachings were the most important ones I applied during this period of work. Thank
you for always calling, telling me how your days were, what the new house looks
like, asking me to be careful, and always hanging up saying that soon we would be
together again. No matter how far I go, all my steps stem from your teachings on how
to walk this world. For these reasons and for all the other possible reasons that I did
not mention, I dedicate this work to my parents.

To my brother, Heitor de Moura Del Esposte, I am deeply grateful for his
tireless loyalty, companionship, faith, respect, trust, and love. Our friendship is
my inexhaustible source of inspiration to be always better. Ever since I can remember,
you have always stood by my side in all the achievements and failures, and this time
it could not be different. In fact, I felt your presence stronger than before, becoming
my driving force in my daily life. I also dedicate this work to my best friend, Heitor.

ii

I can not fail to thank my relatives who cheered for me and supported me, as they
have done in all the stages since I was born, including uncles, aunts, my cousins, those
who are no longer here, and, of course, my grandmother. Still talking about family,
I have great gratitude for my closest friends, to whom I had to say goodbye when I
came. They are my main link with other memorable moments of my life, like high
school, bands, and college. Despite the physical distance, my relationship with most
of them has evolved significantly. They always made a point of keeping the flame of
our friendship burning, regardless of where we are, which brought me a lot of strength
in those times when I have been away. Not only through the various comings and
goings between Brasília - São Paulo connection, but mainly through the details is
that I can realize that the link I have with these friends exceeds specific moments in
the past. They are my link with life in the present and in the future.

Finally, I deeply thank Ana Paula Vieira Araujo for being the one who lives next
to me; for being incredibly inspiring; for being my lifemate; for saving me; and for
giving me wonderful days in her presence. Your love has led me through incredible
places. Your dedication helps me make great strides, such as this one now. Living
with you has been a charming experience. Dreaming and building the life with you is
invaluable. And all the good that your presence provides has a significant impact on
the results I have achieved with this work. I love you.

During this Master’s degree, I had the opportunity to socialize with many people
that I would like to thank. Special thanks to those who have contributed in some way
to my stay in São Paulo and USP, either through their services or simply being part
of everyday life. In this context, I acknowledge the neighbors who helped me in my
earlier days in São Paulo city (especially Dona Malú); to the doormen of the IME’s
buildings (especially the CCSL); the coffee ladies; Marcia and Nelson for their work
on the CCSL; Vicente for the moments of relaxation; and all the people with whom I
shared the lab during those years.

More especially, I would like to thank my fellows from Lappis Society with whom
I had the honor of working and living during this period, both inside and outside the
university. It has been amazing to be able to share so many ideas, projects, jokes, and
stories with such talented and competent people. I am very grateful to those Lappis
Society colleagues who stood side by side with me in the struggles of everyday life in
the university. You are my battle brothers without whom it would have been much
harder to win. I believe we have created a remarkably strong link that will echo for
the rest of our professional and personal lives.

I would like to thank Professor Paulo Meirelles for the trust and opportunity
provided. Also, I am grateful to him for all the ideological, technical, and methodolog-

iii

ical teachings which I used extensively during this thesis. I acknowledge my advisor,
Professor Fabio Kon, for the opportunity to do this Master’s degree, and for his
support and guidance along this thesis. He has given me many opportunities of growth,
learning, living, and working, that impacted significantly on my academic education.

I acknowledge Professor Fabio Costa, Professor Kelly Braghetto, and Nelson Lago
for their excellent contributions to the experiments carried out during this thesis
and for co-authoring the papers that were published for the dissemination of the
results obtained. We acknowledge Lucas Kanashiro and Eduardo Santana for their
contributions in the final experiments of the platform, mainly in the integration of
the platform with the simulator and in the definition of the used scenario.

We also acknowledge the following developers for their contributions to the
InterSCity platform source code: Alander Marques, Alexandre T. K., Ariel Palmeira,
Athos Ribeiro, Cadu Elmadjian, Caio Salgado, Caroline Satye, Danilo Caetano,
Debora Setton, Dylan Guedes, Fernanda de Camargo, Fernando Freire, Frederico
Lage, Henrique Potter, Igor Lima, João Brito, João Henrique Almeida, Leonardo
Pereira, Lucas Brilhante, Lucas Kanashiro, Macartur Sousa, Marisol Solis, Rodolfo
Scotolo, Rodrigo Faria, Rodrigo Siqueira, Rogerio Cardoso, Tallys Martins, Thiago
Petrone, and Wilson Kazuo.

This research received financial support from CAPES, CNPq, and FAPESP.

Resumo

Arthur de Moura Del Esposte. A Scalable Microservice-based
Open Source Platform for Smart Cities. Dissertação (Mestrado). Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2018.

As tecnologias de Cidades Inteligentes surgem como uma potencial solução para
lidar com problemas comuns em grandes centros urbanos, utilizando os recursos
da cidade de maneira eficiente e fornecendo serviços de qualidade para os cidadãos.
Apesar dos vários avanços nas tecnologias de middleware para suporte às cidades
inteligentes do futuro, ainda não existem plataformas amplamente aceitas. A maioria
das soluções existentes não oferece a flexibilidade necessária para ser compartilhada
entre as cidades. Além disso, o vasto uso e desenvolvimento de software proprietário
levam a problemas de interoperabilidade e limitam a colaboração entre grupos
de P&D. Nesta dissertação, exploramos uso de uma arquitetura de microsserviços
para abordar os principais desafios práticos em plataformas de cidades inteligentes.
Mais especificamente, estamos preocupados com o impacto dos microsserviços sobre
requisitos não-funcionais para permitir o desenvolvimento de cidades inteligentes, tais
como o suporte a diferentes demandas de escalabilidade e o fornecimento de uma
arquitetura flexível que pode evoluir facilmente. Para esse fim, criamos a InterSCity,
uma plataforma para cidades inteligentes de código aberto baseada em microsserviços
que visa apoiar o desenvolvimento de aplicativos e serviços sofisticados em múltiplos
domínios. Nossa experiência inicial mostra que os microsserviços podem ser usados
adequadamente como blocos de construção para obter uma arquitetura flexível e
fracamente acoplada. Resultados experimentais apontam para a aplicabilidade de nossa
abordagem no contexto de cidades inteligentes, já que a plataforma pode suportar
diferentes demandas de escalabilidade. Esperamos permitir pesquisas colaborativas
e inovadoras em cidades inteligentes, assim como o desenvolvimento e iniciativas
de implantações reais através da plataforma InterSCity. A validação completa da
plataforma será realizada usando diferentes cenários de cidades inteligentes e cargas
de trabalho. Os trabalhos futuros compreendem o esforço contínuo de projetar e
desenvolver novos serviços de processamento de dados, bem como a realização de
avaliações mais abrangentes da plataforma proposta por meio de experimentos de
escalabilidade.

Palavras-chave: Cidades Inteligentes. Platforma de Software. Microsserviços. Escal-
abilidade. Software Livre

vii

Abstract

Arthur de Moura Del Esposte. A Scalable Microservice-based
Open Source Platform for Smart Cities. Thesis (Masters). Institute of Mathe-
matics and Statistics, University of São Paulo, São Paulo, 2018.

Smart City technologies emerge as a potential solution to tackle common problems in
large urban centers by using city resources efficiently and providing quality services for
citizens. Despite the various advances in middleware technologies to support future
smart cities, there are yet no widely accepted platforms. Most of the existing solutions do
not provide the required flexibility to be shared across cities. Moreover, the extensive use
and development of non-open-source software leads to interoperability issues and limits
the collaboration among R&D groups. Our research explores the use of a microservices
architecture to address key practical challenges in smart city platforms. More specifically,
we are concerned with the impact of microservices on addressing the key non-functional
requirements to enable the development of smart cities such as supporting different
scalability demands and providing a flexible architecture which can easily evolve over
time. To this end, we are developing InterSCity, a microservice-based open source
smart city platform that aims at supporting the development of sophisticated, cross-
domain applications and services. Our early experience shows that microservices can
be properly used as building blocks to achieve a loosely coupled, flexible architecture.
Experimental results point towards the applicability of our approach in the context of
smart cities since the platform can support multiple scalability demands. We expect to
enable collaborative, novel smart city research, development, and deployment initiatives
through the InterSCity platform. The full validation of the platform will be conducted
using different smart city scenarios and workloads. Future work comprises the ongoing
design and development effort on data processing services as well as more comprehensive
evaluation of the proposed platform through scalability experiments.

Keywords: Smart Cities. Software Platform. Microservices. Scalability. Open Source.

viii

List of Figures

2.1 The scalability cube from The Art of Scalability book (Abbott and
Fisher, 2009). 13

2.2 Architecture of the CiDAP platform (extracted from (Cheng et al.,
2015)) . 17

2.3 FIWARE architecture overview . 18
2.4 DIMMER architecture overview . 23

3.1 The InterSCity Platform Architecture. 28
3.2 InterSCity API gateway . 32
3.3 InterSCity load balancing HTTP requests 32
3.4 InterSCity Asynchronous messaging 34
3.5 Competing Consumers design pattern 34
3.6 Example of Input JSON to Register a City Resource. 39
3.7 Example of Response for the Request to Register a Resource. 40
3.8 Example of Input JSON to Publish Context Data. 41
3.9 Example of Input JSON for Actuation Subscription. 42
3.10 Example of Webhook JSON Body. 42
3.11 Example Response of the Search Endpoint. 44
3.12 Example Input JSON with Parameters to Filter Context Data. 46
3.13 Example Input JSON for Request Actuation Commands. 47
3.14 Example Response for Request Actuation Commands. 47
3.15 Screenshot of the Smart Parking application. 50
3.16 Parking spot details in the Smart Parking application. 50
3.17 Smart Parking application life cycle. 52
3.18 Screenshot of the São Paulo Health Dashboard. 53
3.19 São Paulo Health Dashboard application lifecycle. 54
3.20 Screenshot of the SancaLights project. 55
3.21 Screenshot of the SPoiler Twitter bot. 56

4.1 Scalability-seeking Experimental Method 58

ix

4.2 Improvement Cycles of the First Round of the Scalability-seeking
Experimental Method . 60

4.3 First improvement cycle - InterSCity design. 61
4.4 Improvement Cycles of the Second Round of the Scalability-seeking

Experimental Method . 63

5.1 Response time degradation. 67
5.2 Speedup - performance improvement varying the number of Resource

Adaptors. 68
5.3 Throughput improvement varying the number of Resource Adaptors. . 69
5.4 Heat maps of the distributions of parking spots and car trip destinations

in the City of São Paulo . 72
5.5 Cluster Node Pools for the experiments 73
5.6 Average workload generated by the InterSCSimulator 75
5.7 InterSCity services autoscaling . 76
5.8 Average InterSCity throughput . 76
5.9 InterSCity Average Response Time 77

List of Tables

2.1 Smart City Platforms’ Features . 24

3.1 Technology Stack of InterSCity Microservices 35
3.2 Scalability strategies supported by InterSCity microservices 37

xi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives and Contributions . 3

2 Background and Related Work 7
2.1 Smart City Platforms . 7
2.2 Microservices Architecture . 11
2.3 Smart City Projects . 15

3 The InterSCity Platform 25
3.1 Design Principles . 25
3.2 Platform Architecture . 27
3.3 Design Details to Address Scalability 29

3.3.1 Functional Decomposition . 29
3.3.2 Communication Style . 31
3.3.3 Design and Technology Heterogeneity 35
3.3.4 Independent Deployment . 37

3.4 Microservices . 39
3.4.1 Resource Adaptor . 39
3.4.2 Resource Catalog . 41
3.4.3 Data Collector . 43
3.4.4 Actuator Controller . 45
3.4.5 Resource Discovery . 46

3.5 Implementation Principles . 48
3.6 Application Life-cycle . 49

3.6.1 Smart Parking App . 49
3.6.2 São Paulo Health Dashboard 51
3.6.3 SancaLights . 53
3.6.4 Recomenda SP . 54

xii

4 Scalability-seeking Experimental Method 57
4.1 Improvement Cycles of the First Round 58
4.2 Improvement Cycles of the Second Round 62

5 Scalability Evaluation 65
5.1 Evaluating the Preliminary InterSCity Version 65

5.1.1 Degradation Analysis . 66
5.1.2 Scalability Analysis . 67
5.1.3 Threats to Validity and Limitations 68

5.2 Evaluating the Latest InterSCity Version 69
5.2.1 Smart City Scenario . 70
5.2.2 Experiment Configuration . 72
5.2.3 Scalability Analysis . 74
5.2.4 Threats to Validity and Limitations 77

6 Conclusion 79
6.1 Future Work . 80

Bibliografia 83

1

Chapter 1

Introduction

The rapid growth of cities around the world has created large, densely populated
urban centers characterized by complex interconnected structural, social, and economic
organizations. According to the Department of Economic and Social Affairs of the
United Nations (2014), the slice of the world’s population living in urban areas
increased from 30% in 1950 to 54% in 2014, and by 2050, it is expected to reach
66%. The urbanization phenomenon around the world imposes several challenges
for sustainable development and quality of life in cities, as well as generated several
problems related to health care, education, public safety, transportation, pollution, to
cite only a few examples.

Since traditional management approaches cannot overcome such challenges, the
government, academy, and industry need to join efforts to develop and apply new
solutions. Thus, smart cities emerge as a new paradigm aimed at addressing the
aforementioned problems by using city resources efficiently and providing quality
services for its citizens. Smart cities are characterized by the adoption of Information
and Communication Technologies (ICT) as an integral part of the city’s infrastructure
to support multiple solutions for urban challenges (Neirotti et al., 2014). The
Internet of Things (IoT), Big Data, Cyber-physical Systems, and Cloud Computing
are key enabling technologies of smart cities. Although these areas have evolved
considerably recently, their integration is not straightforward, offering a wide range of
opportunities and challenges, both in the academy and industry spheres.

Several efforts have been devoted to the study and development of this new
paradigm, leading to a proliferation of smart city initiatives around the world,
targeting different domains such as urban mobility, energy management, and healthcare.
However, most of these initiatives have been developed using ad-hoc approaches.
They neither follow a common set of practices and standards nor consider the
need for data and resource sharing among the different systems in the city. This
hinders the development of smart city solutions that are sustainable in the long term,
creating market islands and raising extensibility, adaptability and interoperability
issues (Villanueva et al., 2013). To fully exploit the potential of these enablers,
future smart cities will demand a unified ICT infrastructure to share their resources
properly rather than relying on non-integrated solutions.

Many authors advocate that integrated middleware platforms can provide the
required infrastructure to support the construction of sophisticated, cross-domain

2

1 | INTRODUCTION

smart city applications (Villanueva et al., 2013; Hernández-Muñoz et al., 2011;
Fazio et al., 2012). The use of smart city platforms facilitates fast development
of integrated, high-quality smart-city services and applications (Santana et al.,
2017). Comprehensively, a smart city platform is a software infrastructure capable
of enabling interoperability between a city’s multiple systems, devices, and other
services, abstracting their inherent communication complexities with the main goal of
offering facilities to support the development of smart city solutions such as mobile
apps, Software as a Service (SaaS), and management dashboards. Such platforms must
implement a set of common functional requirements in the form of reusable services
for application developers. Although each project contains particularities, we can list
a set of characteristics common to several of these systems, as observed in previous
surveys (Santana et al., 2017):

• Integration and Management of IoT Devices

• Data Management and Processing

• External Data Access

• Context-Awareness

• City Resource Discovery

• Geolocation-based Services

1.1 Motivation
Despite the various advances in middleware technologies, protocols, and standards,

many aspects related to the design, development, deployment, and management of
smart city platforms still challenge the research community. Consequently, there are
no widely accepted platforms yet, and existing solutions do not provide the required
flexibility to be shared across cities (PCAST, 2016). In the following, we highlight
three key factors that contribute to the lack of practical and reusable solutions in the
field.

First, in addition to traditional functional capabilities, smart city platforms
must meet a number of non-functional requirements to enable their use in different
environments and applications. Security and privacy policies may change according to
the laws and regulations of the city, impacting design decisions regarding storage and
availability of the data on the platform. Different contexts may expose a great diversity
of requirements, which may dynamically evolve. Thus, smart city platforms must
provide a flexible architecture to adopt new technologies and support new functional
and non-functional requirements to suit the diversity of the multiple and constantly
evolving city environments where they are deployed.

Similarly, a smart city platform must integrate a large number of users, devices,
and services as well as their associated data. In particular, these platforms must offer
different scalability strategies by design to meet the diverse scalability demands. A
smart city platform must handle a large number of devices integrated with the city
infrastructure. It needs to store and process large volumes of data related to the city,

1.2 | OBJECTIVES AND CONTRIBUTIONS

3

which are continuously produced and consumed by the devices and client applications.
At the same time, the platform must be able to support thousands of requests from
the users and services that use its functionalities. The scalability demands for the
platform, thus, vary according to the characteristics of the city, as well as those of
the deployed applications and services. For instance, a city may start with a pilot
project in one of its neighborhoods and then expand to other regions as the required
infrastructure becomes available. Therefore, the dynamism and continuous evolution
of urban environments require the use of new approaches to develop flexible, evolvable,
maintainable, and scalable architectures for smart city platforms (Krylovskiy et al.,
2015).

The second point is related to the extensive use and development of non-open
source software in the core of smart city platforms which jeopardize their widespread
adoption as it leads to interoperability difficulties. Also, this approach limits the
collaboration among R&D groups, often forcing them to “reinvent the wheel", which is
a recurrent problem in Computer Science research (Peng, 2011; Freire et al., 2012).
The use of open technologies is crucial to the sustainability and development of future
smart cities, since they prevent vendor lock-in, enable collaborative development,
market opportunities, and sharing of solutions. More specifically, systems that control
lives in cities, such as smart city platforms, should not be black boxes. The open
source approach enables citizens to understood and audit such systems.

Finally, the research community lacks practical and scientific validation to evaluate
the different aspects of smart city solutions, such as social and economic impact,
internal and external quality, performance, scalability, and feasibility, to cite a few.
Among the papers surveyed by Santana et al. (Santana et al., 2017), most of
the projects that supposedly meet scalability requirements only present superficial
discussions of design and implementation decisions that can lead to a scalable
architecture. In (L. Sanchez et al., 2011), the authors observed that although
many IoT projects present concrete solutions, validation of the developed technologies
and architectural models are limited to proofs-of-concept, not allowing conclusive
results.

However, demonstrating the actual scalability of smart city platforms presents
significant challenges due to the lack of available infrastructure, real experimental
setups, and comprehensive datasets. Therefore, we still need more comprehensive
studies with experiments and tests that allow the comparison of different smart city
technologies. For this purpose, significant effort should be devoted to (1) deploying
existing solutions in real production scenarios, (2) developing methods and tools
for more sophisticated simulation-based evaluations, and (3) developing well-defined
benchmark strategies for cross-platform assessment.

1.2 Objectives and Contributions
The goal of this Masters research is to advance the state-of-the-art by exploring the

impact of a microservices architecture in the design, development, deployment, and
performance of scalable smart city platforms. To this end, we propose InterSCity, an
open source microservices-based cloud-native platform for smart cities. We expect to
provide a high-quality, modular, highly scalable middleware infrastructure to support

4

1 | INTRODUCTION

smart city solutions that can be reused across cities and R&D groups, as well as
governments and companies.

InterSCity leverages the microservice approach to implement the fundamental
modules described by the reference architecture proposed in (Santana et al., 2017),
conceived from the analysis of 23 smart city projects. This reference architecture
describes the building blocks needed to meet the main functional and non-functional
requirements to guide the development of next-generation platforms for smart cities.
Thus, the platform aims at providing high-level services to manage heterogeneous IoT
resources, data storage and processing, and context-aware resource discovery.

In this work, we present the preliminary design and implementation details of the
InterSCity platform to address the design challenges in smart city systems. Moreover,
we present a set of reproducible experiments to evaluate the InterSCity scalability
properties, detailing the experimental method and providing a comprehensive analysis
of the results. In particular, we expect to achieve the following technical and scientific
contributions to smart cities platforms research, denoted by TC and SC, respectively.

• TC1 - InterSCity design and implementation - the initial design and
implementation of the InterSCity platform as an open source project to enable
novel smart city research, development, and deployment initiatives. Although it
comprises fundamental requirements of the InterSCity project, the presented
architecture is not definitive. However, it implements the main ideas, design
patterns, design principles, and communication protocols which will serve as
a basis for future developments. Moreover, its loosely-coupled archictecture
based on single-purpose services and our open source approach contribute to its
extensibility and adoption.

• TC2 - Deployment of an online instance - a production-like environment
of the InterSCity platform to integrate with existing available data and services
of the São Paulo city. This instance is currently available online1 being used in
an exploratory way by other research groups and students during programming
courses, mainly for conducting research and for developing applications. Also,
we used this online instance for the 2017 USP Hackathon on Smart Cities2

• SC1 - Advances in smart city platforms evaluation - advances on the
performance evaluation of smart city platforms with the use of a simulation-
based approach. More precisely, we discuss and address the challenges related
to two aspects of smart city platforms evaluation: (I) workload generation that
genuinely represents the dynamics of smart cities; (II) improve the reproducibility
of experiments by automating the deployment and configuration tasks through
DevOps techniques.

• SC2 - Analysis of the adoption of microservices in the context
of smart cities - a comprehensive analysis of the impact of InterSCity’s
microservice architecture to address key research challenges regarding scalability
in smart city platforms. For this purpose, we deepen the main design decisions to

1http://playground.interscity.org/
2http://interscity.org/events/hackactona-usp-smart-cities/

http://playground.interscity.org/
http://interscity.org/events/hackactona-usp-smart-cities/

1.2 | OBJECTIVES AND CONTRIBUTIONS

5

meet scalability requirements and designed reproducible experiments to evaluate
the InterSCity performance in scenarios with workload variations. In addition to
scalability, we explore our early experience in adopting microservices architecture
and its impact on other key pragmatic aspects, such as the complexity and
evolvability of the system.

• SC3 - Scalability-seeking experimental method - an iterative method we
have adopted in the InterSCity development life-cycle to develop and evaluate
scalable software architectures. This method is based on performance testing with
the objective of continuously improving the proposed solution and identifying
possible bottlenecks to solve them beforehand.

We developed this research in the context of the InterSCity consortium3 - INCT
of the Future Internet for Smart Cities. The goal of the InterSCity project is
to develop multidisciplinary research on software infrastructure for smart cities,
producing both scientific and technical contributions to the community (Batista
et al., 2016). Therefore, the development of this masters thesis followed InterSCity
projects’ guidelines aiming at producing high impact, reproducible scientific results as
well as open source software that can be maintained later by the project community.

The remainder of this text is organized into four major parts: Chapter 2 sets
the background of our work and presents a discussion of the main related work and
their differences with our approach. Chapter 3 describes in detail the proposal and
implementation of the InterSCity microservices architecture. Chapter 4 introduces
our method to iteratively develop and evaluate the InterSCity platform towards a
scalable architecture. Chapter 5 presents the experiments we conducted to evaluate
the platform and a comprehensive analysis of the obtained results. Lastly, we present
the final remarks, open challenges, and opportunities for future work in Chapter 6.

3http://interscity.org

http://interscity.org

7

Chapter 2

Background and Related Work

This chapter covers the essential background knowledge regarding the subject
of this research and discusses some important related work. First, it presents an
overview of the concepts about smart city platforms, defining their main functional
and non-functional requirements. Then, we conceptualize the microservices architecture
paradigm, which is the fundamental basis of the InterSCity platform and the study
target of this research. Finally, we present some notable smart city platforms proposed
by existing smart city initiatives, driving into their architectures to elucidate how
these platforms meet the requirements and identify the key open challenges.

2.1 Smart City Platforms
Discussions about the need for changes in traditional approaches to manage the

development of cities have grown significantly driven by the increase in urban problems
such as pollution, traffic jams, precarious health infrastructure, and social inequality.
In this context, the concept of Smart Cities appears as a new paradigm to address
the challenges mentioned above characterized by the extensive use of Information
and Communication Technologies (ICT) as means of helping cities use their resources
efficiently and improving the living conditions of the population (Neirotti et al.,
2014). However, several authors advocate that ICT investments alone do not imply
that a city is smart because such investments must be aligned with the development of
human capital, improvements in the physical infrastructure of urban environments, and
the right policies (Caragliu et al., 2009; González and Rossi, 2011; Partridge,
2004).

The adoption of ICT must meet the same principles of smart cities, being
sustainable, promoting the reuse of resources, and reflecting the real needs of urban
environments. Therefore, the application of techniques and technologies to enable
the development of smart cities must be carefully studied so that they do not
jeopardize the growth of cities, rather than helping them. Among other important
steps, future smart cities must integrate and leverage key enabling technologies such
as the Internet of Things (IoT), Cloud Computing, and Big Data. Such integration is
not straightforward as these areas advance rapidly in both the academic and industrial
spheres, consequently creating new solutions and standards to address the constantly
evolving challenges.

8

2 | BACKGROUND AND RELATED WORK

Although several smart city initiatives have produced results and applications to
solve a wide range of problems, they are mostly focused on a specific domain, targeting
a particular problem, with little software reuse (Santana et al., 2017; Villanueva
et al., 2013). The proliferation of vertical solutions and isolated initiatives in cities
leads to non-interoperable services, forcing the development of ICT infrastructure from
scratch with little resource reuse, and fragmentation of information. The emergence of
isolated solutions in different domains, either by government agencies or commercial
initiatives, creates unsustainable systems and market islands that rely on their own
ICT infrastructures which comprise similar services, such as integrating cyber-physical
systems, storing sensor data, processing data streams from various sources, and
providing visualization tools (Hernández-Muñoz et al., 2011).

Many authors advocate that services with great potential of reuse could be
brought together in an integrated platform to support cross-domain applications rather
than vertical silos (Villanueva et al., 2013; Santana et al., 2017; Hernández-
Muñoz et al., 2011; Fazio et al., 2012). Such platforms must provide a horizontal
middleware infrastructure with facilities for application development, management,
and deployment. Henceforth, in this text, we will adopt the term smart city platform
as defined by Santana et al., 2017: "an integrated middleware environment that
supports software developers in designing, implementing, deploying, and managing
applications for Smart Cities".

Identifying the fundamental requirements for smart city platforms is an important
task for designing a new solution, as these platforms must integrate heterogeneous
software services and serve as a basis for the development of various applications. The
identification of these requirements is also important to design appropriate benchmarks
for comparing existing solutions. Most of the requirements can be found scattered
through papers that present new architectures for smart cities. However, these works
fail to properly organize the requirements as they mainly focus on the solution they
are proposing.

To the best of our knowledge, only a few studies on the literature aim at organizing
these requirements through surveys on existing projects or literature reviews. Silva
et al., 2013 described some important requirements that smart city architectures
must meet, regardless of how they are implemented. Although the authors point out
important requirements, such as objects interoperability, privacy policies support,
and real-time monitoring, they do not cover several important aspects, such as
development support and scalability demands. Furthermore, the use of vague and
high level abstraction to identify some of the requirements as well as the lack of more
detailed information impair the understanding of the most relevant needs for the
development of smart city solutions.

Santana et al., 2017 conducted a comprehensive survey on smart city platforms
to analyze the most used enabling technologies while also identifying functional
and non-functional requirements for smart city platforms. Functional requirements
encompass the features necessary to support the development of smart city applications
and services, while the non-functional requirements are related to the quality with
which these services are offered. Below, we list the smart city platforms requirements
identified in (Santana et al., 2017), which guided the development of our work.

2.1 | SMART CITY PLATFORMS

9

Functional Requirements
• IoT Integration and Management - smart cities platforms must integrate a

number of heterogeneous objects that communicate through different protocols
to enable collecting data about various aspects of the city (via sensors) and
to receive commands to change physical features (via actuators) dynamically.
While there are initiatives that aim to provide standardized cloud services for
the management and integration of IoT devices, others also address lower-level
requirements, such as deploying and management of Wireless Sensor Networks.
To properly support the development of applications, smart city platforms
must encapsulate IoT devices in logical abstractions that hide the underlying
technological particularities, such as network protocols and data representation.

• City Models and Abstractions - smart city platforms must provide facilities
to intermediate and abstract all the communication among client applications
and the underlying devices. In particular, a platform should provide standardized
means of access to the city’s resources through well-defined models and
abstractions, offering services to facilitate the discovery of these resources
and the access to the data produced. Abstractions and concepts provided
by pure IoT ontologies and standards, such as proposed in (Bauer et al., 2013;
Serrano et al., 2015), are not sufficient to fully enable smart city applications.
Conversely, application developers require abstractions that correspond to the
city’s concepts, such as buildings, cars, buses, and light poles, rather than
dealing with technical specificities related to the cyber-physical infrastructure
that enables the interaction of these objects with the city, such as which sensors
those entities couple.

• Data Management and Processing - the integration of a large number of
devices and data sources require smart city platforms to manage data from the
city, providing storage, processing, analysis, and visualization services. Data
processing facilities may include inference services, workflow processing, historical
data processing, and real-time analysis of data streams. In this sense, smart city
platforms prevent each of the client applications from having to implement the
infrastructure required for such tasks while promoting the reuse of services.

• Context-awareness - the behavior of smart city applications may change
according to the user preferences, location, and context. Also, to properly
support the development of smart city applications, middleware platforms needs
to enable the characterization of city entities, such as their situation and location.
In general, instead of providing the raw sensor data which is directly retrieved
from an IoT device, the contextual information adds meaning to those data,
check for consistency, and may comprise additional metadata (Perera et al.,
2014). For instance, the data collected by GPS sensors coupled to public buses
could be considered raw data, while the bus’ geographical location and speed
inferred from the raw data define its context. It is also relevant to understand the
context of the application user to properly offer service and features meaningful
for his/her context, such as providing traffic information on his/her route instead
of roads that are not part of his/her path. Therefore, smart city platforms may

10

2 | BACKGROUND AND RELATED WORK

leverage context data from city resources to provide more relevant information
and services to the supported applications and users. Such services can be used
to discover the most important city resources and data to properly support user
tasks and to define which information needs to be presented.

• External Data Access and Application Run-time - platforms must provide
either an API to be remotely accessed through communication protocols (e.g.,
HTTP and MQTT) or offer a run-time environment to manage the deployment
and execution of client applications.

• Software Engineering Tools - ideally, smart city platforms should provide a
set of software engineering tools to improve the development support, such as
native libraries, a Software Development Kit (SDK), and even visual interfaces
to help non-programmer users to build dashboard-based applications

Non-Functional Requirements
The adoption and feasibility of a smart city platform will depend not only on

their features but also on how it addresses important non-functional requirements.
Santana et al., 2017 identified the key non-functional requirements for smart city
platforms, which are objective of several studies on the area:

• Interoperability - smart city platforms must handle a large number of
heterogeneous devices, systems, services, and applications that comprise a
smart city environment in an integrated fashion. For this purpose, smart city
platforms must enable both underlying IoT infrastructure and applications
to get the city information, exchange data, and be able to understand and
process it. More specifically, interoperability requirements impact on several
levels: (I) the communication protocols and the infrastructure needed for those
protocols to operate; (II) the data formats that will be exchange among software
components; (III) the semantic associated with the meaning of the content for
human interpretation (Serrano et al., 2015)

• Security and Privacy - the design of a platform should handle several security
and privacy requirements. The former is related to the robustness of the
architecture to handle threats to city infrastructure and information. The latter
is associated with the manipulation of data from several sources and from citizens
without exposing sensitive data or identifiable information.

• Adaptation - smart city platforms must adapt to changes in city environments
with low effort and external intervention. The adaptability of a software
ecosystem concerns various aspects of the system, such as adapting their behavior
based on context data, managing resources elastically to meet diverse scalability
demands, and dynamically supporting changes in regulations and policies. This
requirement is fundamental to platforms that aim to be shared across several
cities.

• Cloud-native - although some smart city platforms implement components
to comprise underlying IoT devices, protocols, and infrastructure, they have

2.2 | MICROSERVICES ARCHITECTURE

11

mostly cloud-native software components. By doing so, these platforms levarages
the highly available, elastic infrastructure of Cloud Computing to meet the
complexity of smart city solutions.

• Evolvability and Extensibility - urban environments are very dynamic
and tend to change regularly regarding organization, regulations, problems,
opportunities, and challenges. Therefore, smart city platforms must expand to
meet changing requirements in a cost-effectively way. Evolvability is the system’s
capability to evolve by supporting rapid modification and enhancement with
low cost and small architectural impact, and is a fundamental element for the
success and economic value of long-lived software (Breivold et al., 2012).

• Scalability - a platform must scale well in multiple dimensions to properly
support a smart city. Among others, smart city platforms must handle: (I) a
large number of devices that compose the city IoT infrastructure; (II) millions of
users and components that use the platform services; (III) a very large volume
of city-related data that must be stored and processed; (IV) a potentiality large
set of new services that can interact with the platform to offer complementary
capabilities. The scalability requirements may vary depending on the context
and should be addressed since the beginning of any smart city project.

Lastly, as we highlighted in Chapter 1, it is highly desirable for smart city solutions
to be built as open source software and support open standards so that they can be
shared across different initiatives avoiding cities to reinvent the wheel.

2.2 Microservices Architecture
The main objective of this masters research is to propose the initial architecture

of the InterSCity platform. In particular, we aim at providing a scalable middleware
infrastructure that can evolve over time to meet the constantly varying requirements
of smart cities. Our strategy to address scalability and evolvability issues, while
providing the required services to support smart cities is to adopt a microservices
architecture. Microservices is an architectural style to develop a system as a set of
distributed fine-grained, independent services that collaborate through lightweight
communication mechanisms (Lewis and Fowler, 2014). The microservices model
emerged from the software industry efforts to build large-scale distributed systems
gathering the guidelines of traditional Service Oriented Architecture, domain-driven
design, continuous delivery, on-demand virtualization, infrastructure automation, and
small autonomous teams (Newman, 2015).

This architectural style promotes the modularity via services, a set of independent
processes interacting via network protocols such as web services or remote procedure
calls (Dragoni et al., 2016). Each microservice must implement a highly cohesive,
low-scoped functionality built around business capabilities with explicit boundaries
(Lewis and Fowler, 2014). The boundary of a microservice is usually defined by
its technology-agnostic application programming interface (API) that can be used
by other microservices regardless of the underlying technologies (i.e., programming
languages and frameworks). As a consequence, this isolation promotes a low coupled

12

2 | BACKGROUND AND RELATED WORK

architecture, allowing independent microservices deployment and version management
leveraging the use of DevOps techniques (Balalaie et al., 2016), as well as Agile
principles, such as continuous delivery and embracing changes. Conversely, the main
drawbacks of this approach lie on the increased overall complexity of the system and
the extensive use of remote calls, which are more expensive than in-memory calls.

The implementation of a limited amount of functionalities makes microservices’
codebase small, facilitating maintenance, fast isolated testing, and limiting the scope of
a bug. It’s worth noticing that the microservices approach drives to decentralized data
management letting each service manage its database, enabling Polyglot Persistence1

toward different storage technologies for different kinds of data, but also imposing
trade-off decisions regarding data consistency (Lewis and Fowler, 2014). At the
same pace, microservices-based architectures promote technology heterogeneity, since
each service can be implemented using the most appropriate stack of technologies to
properly meet the business requirements.

We advocate that the adoption of microservices guidelines to design smart city
platforms can address several important challenges towards the development of
practical solutions. In addition to the benefits mentioned above, the functional
decomposition of large systems into smaller collaborating services is key to meet
two non-functional requirements: scalability and evolvability. The microservices
approach supports an evolutionary design without slowing down change in three
aspects. First, except for changes on communication interfaces, modifying, adding
features, or fixing errors on a single microservice codebase will not affect others, neither
on code level nor deployment. Second, the loosely coupled architecture is optimized
for replaceability (Newman, 2015). The barriers to replace a small service with an
entirely new better, implementation are very low, both regarding writing the new
code and regarding deploying the new service. Last, the independence of microservices
and their well-defined APIs encourage the addition of new services to meet changing
requirements.

Regarding scalability, the functional decomposition of a microservices architecture
supports different levels of scalability by splitting workloads among all services. This
scaling corresponds to the Y-axis scaling of Scale Cube (Figure 2.1), the 3D model of
scalability from the book The Art of Scalability (Abbott and Fisher, 2009). The
entire workload of the system will be handled by separate services, probably non-
uniformly. It is also possible to apply the X-axis scaling strategy by balancing the load
among several instances of the same service (e.g., behind a load balancer). However,
in a microservice architecture, we only need to scale out the stressed services, rather
than scaling the entire system. Finally, microservices may also support scalability
by data partitioning, represented by the Z-axis on the Scale Cube. By applying this
strategy, different copies of the same service are responsible for a subset of the data.
In this scenario, a component of the system must use additional information, such as
a primary key of the requested data or user identity, for routing the requests to the
appropriate server. Z-axis scaling are commonly used in the database layer by NoSQL
technologies, such as MongoDB2, and can be implemented for the microservices with
higher data demand.

1https://martinfowler.com/bliki/PolyglotPersistence.html
2http://mongodb.org

2.2 | MICROSERVICES ARCHITECTURE

13

Figure 2.1: The scalability cube from The Art of Scalability book (Abbott and Fisher,
2009).

For comparative purposes, in the following, we describe the differences among the
studied approach and two of the most adopted system architecture styles: monoliths
and traditional SOA.

Microservices vs. Monoliths

Monolith is a software built on a single codebase whose modules cannot be deployed
and executed independently, since they rely on the sharing of resources on the same
machine, such as memory, databases, and files. Dragoni et al., 2016 describe in detail
some of the major problems of monolithic software such as those listed below:

• The larger is the size of a monolith, the harder is to maintain and evolve due to
its complexity. Microservices-based architecture relies on smaller services that
can be managed in separate codebases that can evolve independently.

• Changing one small module of a monolith requires rebooting the whole
application, which may hinder the development, maintenance, and execution of
the system. In a microservices architecture, only the modified services need to
be updated and rebooted.

• Monoliths limit scalability since the increased load usually only stresses a few
specific modules (e.g., classes), making the allocation of new resources for the
other components inconvenient (e.g., for load balancing purposes). As previously
discussed, microservices natively supports Y-axis scaling of the Scale Cube and
encourages the application of other scalability strategies as well.

• A monolith codebase imposes a technological lock-in for developers as changing
in programming languages or frameworks may cause a system-wide impact.
Conversely, due to loosely coupled, technology-agnostic communication interfaces,
developers may choose the most appropriate technologies for implementing a
specific microservice, both in the logic and database tiers.

14

2 | BACKGROUND AND RELATED WORK

Microservices vs. Traditional SOA

Microservices leverage the well-accepted service-oriented computing model in
several aspects by refining traditional SOA guidelines for building large-scale systems.
Although SOA is a comprehensive umbrella term, in this text, we will refer to the
conventional SOA approach considering the architectures that aim at integrating
monolithic applications through an Enterprise Service Bus (ESB) and the ecosystem
of Web service specifications (WS-*)3. Loosely defined, microservices intend to remove
unnecessary levels of complexity of traditional SOA to focus on the development
of simple, cohesive services with a single responsibility (Dragoni et al., 2016). In
the following, we detail the fundamental differences between microservices-based
architectures and traditional SOA:

• Service Size - SOA aims to integrate services of different granularities, which
includes general purpose services or a huge monolithic system that supports an
entire business process. Conversely, microservices lead to systems composed of
smaller services suggesting that if a service is too large, it should be split into
two or more services that provide single business capabilities.

• Integration Mechanisms - Usually, SOA systems rely on a centralized
communication mechanism, such as an ESB, that includes sophisticated facilities
for message routing, choreography, transformation, and application of business
policies (Lewis and Fowler, 2014). The ESB is a potential single point
of failure for the entire application. Conversely, the microservices approach
favours smart endpoints and dump pipes. Therefore, microservices implement the
necessary business capabilities collaborating through public APIs and lightweight
messaging brokers which support simple, reliable asynchronous communication.

• Data Management - SOA usually relies on integration through shared
databases and models. In this context, several services could read and write on
the same database. The microservices community encourages decentralized
databases, where each microservice manages its data and uses the most
appropriate database technology.

• Communication Protocols - As microservice architectures tend to eliminate
unnecessary communication complexity, their services do not implement the
heavy WS-* protocols stack, which is extensively adopted by SOA systems.
Thus, microservices commonly expose their API through the REpresentational
State Transfer (REST) architectural style. REST offers a set of principles and
constraints to expose operations related to resources encapsulated by the services
over lightweight protocols, mainly HTTP.

Although there are efforts to understand the impact of microservices architecture
on other research areas (Le et al., 2015; Gopu et al., 2016), very few works explore
the potential of microservices in the context of smart cities. By refining the main

3The term WS-* encompasses SOAP Web services and their specifications, such as WSDL,
WS-Policy, and UDDI.

2.3 | SMART CITY PROJECTS

15

SOA guidelines to achieve a more flexible, evolvable, and scalable architecture, the
microservices approach has an excellent potential to compose the architecture of next-
generation smart city platforms to address the key research and practical challenges in
the area. In this sense, this masters research advances the state-of-the-art by exploring
microservices in smart city solutions as well as providing a novel open-source smart
city platform as a practical outcome from this effort. The next section presents the
main related works, highlighting their differences regarding our proposal as well as
the open challenges.

2.3 Smart City Projects
Several efforts have been devoted to the study and development of platforms that

address the key challenges of smart cities. In particular, projects that aim at addressing
the practical problems related to the development, deployment, and maintenance
of smart city services and applications are the most relevant in the context of this
work. Thus, in this section, we present some notable smart city platforms proposed in
related work, deepening on their major architectural decisions to meet the above-listed
requirements.

Many middleware platforms were developed in recent years to address multiple
requirements towards the construction of cross-domain smart city solutions, as opposed
to traditional approaches based on vertical silos. The Civitas middleware (Villanueva
et al., 2013) fulfills the main functional requirements by proposing a set of essential
standards and tools to enable smart city ecosystems. Civitas treats everything as a
software object to achieve interoperability and adaptability requirements. The Gambas
project (Apolinarski et al., 2014) offers tools to facilitate the development and
deployment of smart city applications, including a runtime environment and an SDK.
On the other hand, Gambas use a traditional Service-Oriented Architecture to provide
its services but lacks more sophisticated data processing facilities. Although both
Civitas and Gambas address challenges concerning functional requirements, these
platforms do not meet some of the key non-functional requirements, such as scalability,
extensibility, and evolvability.

OpenIoT4 is one of the most relevant projects handling the main requirements
of smart city platforms. It is an open source layered middleware platform that
aims at enabling semantic interoperability across IoT applications, including smart
cities (Soldatos et al., 2015). The platform provides visual tools to facilitate the
administration and implementation of applications directly on top of it. Although
OpenIoT offers several facilities to support IoT applications, it is mainly focused on
address functional requirements and interoperability issues. On the other hand, its
architecture does not deal with important aspects related to scalability, adaptability,
and extensibility.

Almanac5 is an open source federated smart city platform which provides cloud-
based services to support application development based on a SOA architecture
(Bonino et al., 2015). Its features include semantic interoperability, data processing

4https://github.com/OpenIotOrg/openiot
5http://www.almanac-project.eu/news.php

16

2 | BACKGROUND AND RELATED WORK

and management, city models, and integration of IoT devices. However, the most
notable advances in this project are two-fold: (I) the support for federated platforms
offering cross-city and cross-entity services through the combination of multiple
Almanac instances, and (II) privacy management on different aspects by supporting
policy definitions to address role management, task control, and data access. While
the Almanac project brings important contributions by exploring different strategies
to deliver an adaptable architecture that can be shared across cities, we intend to
achieve adaptability and still keep a flexible architecture that can adequately evolve
through a microservice approach to properly meet the continually changing demands
of different urban environments.

In the following, we delved into the architectures of the most relevant related
projects in the context of this research: SmartSantander, FIWARE, and DIMMER.

SmartSantander and CiDAP
Perhaps the most notable project that targets the realistic deployment and

validation of smart city solutions is SmartSantander, which is one of the projects
of the Future Internet Research and Experimentation initiative of the European
Commission. The SmartSantander initiative aims at advancing the IoT research by
creating an experimental test facility for experimentation in architectures, technologies,
and solutions for the IoT, especially in the context of smart cities. For this purpose,
the project provides a smart city testbed with research facilities composed of more
than 20,000 IoT devices deployed in urban environments around the city of Santander
in Spain (Luis Sanchez et al., 2014).

The SmartSantander testbed aims at supporting experimentation with smart city
services in a realistic setting at a large scale, comprising a heterogeneous number of
devices, protocols, and services as well as covering different domains of the city, such
as environmental monitoring, parking space monitoring, gardens precision irrigation,
augmented reality for Points of Interest in the city through NFC tags, and participatory
sensing. To this end, the project implements an architecture composed of three tiers:
IoT node tier for operation and deployment of IoT devices around the city; IoT
Gateway tier to link IoT devices at the edges of the network to a core network
infrastructure; Server tier based on cloud computing to host data and high-level IoT
services.

The main contributions of SmartSantander project are regarding the proposed
architectural reference model for real IoT experimentation and the lessons learned in
deploying a city-scale IoT infrastructure, primarily concerning practical challenges
in managing, maintaining, and handling such large number of heterogeneous devices.
Although the SmartSantander’s server tier provides access to the underlying IoT
infrastructure of the city, the project does not provide middleware facilities for
application development, such as storing, processing, and analyzing generated data.

Despite the relevance of the SmartSantander project to enable experiments in
real scenarios, it is not clear whether it meets important requirements that would
allow its applicability in other contexts (e.g., in cities with different characteristics),
such as adaptability, flexibility, and extensibility. The city of Santander has less than
200,000 inhabitants; we did not find any discussion on the use of this platform in more

2.3 | SMART CITY PROJECTS

17

complex contexts, such as in large metropolises. Also, to the best of our knowledge, no
evaluation of the scalability of the SmartSantander platform has been published yet.

In this sense, Cheng et al., 2015 proposed the CiDAP, a big data analytics platform
for smart cities deployed in the SmartSantander testbed. The main objective of this
platform is to use the data collected from the testbed and analyze it to understand
the city’s behavior. Figure 2.2 presents the overview of CiDAP’s architecture as the
middle layer between underlying data providers and smart city applications.

Figure 2.2: Architecture of the CiDAP platform (extracted from (Cheng et al., 2015))

The IoT Broker is the component responsible for collect data from different formats
and forwards to the Big Data Repository, which may perform simple processing tasks
to transform data before store it. However, the Big Data Processing is the component
responsible for performing more complex and intensive data processing, such as data
mining and aggregations. Finally, CiDAP offers a REST API through the CityModel
component to enable external applications to fetch generated results from data
processing. In general, CiDAP combines a set of Big Data tools, such as Apache Spark
and NoSQL databases, to improve the scalability of the platform and to be able to
deal with historical data, near-time data, and also real-time data.

To evaluate the performance of the proposed architecture, the CiDAP authors
performed a microbenchmark in a small setup composed of few machines in the same
local network, which does not truly represents the production environment in which
such system should operate. They focused on evaluating the performance of their Big
Data Repository component in handling simultaneous updates and queries on sensors
data. The experiments showed that CiDAP could handle 470 simple queries/s from
external applications when launching 8 CityModel parallel instances and considering a
static database with predefined views (without live updates from Santander testbed).
Their experiments also showed that the Big Data Repository could handle almost 300
sensor data updates per second, which was measured with an empty NoSQL database.
Therefore, the authors failed to evaluate their platform scalability considering a

18

2 | BACKGROUND AND RELATED WORK

city-scale realistic scenario and combining the interaction of both applications and
underlying IoT layer with the platform. Such interactions could produce different
performance results in both queries and updates operations, evidencing possible points
of failure and bottlenecks in their architecture.

As a middleware layer, the CiDAP project aims at sharing a common Big Data
infrastructure among many smart city applications to enable the processing of data
from sensors around the city. However, the project fails to handle actuators and to
provide more sophisticated context-awareness features. Besides, it is unclear what
components they have developed to allow integration of the Big Data tools used
and what impact these components have on the system architecture in terms of
performance, adaptability, and evolvability.

FIWARE
The FIWARE6 project is an initiative funded by the European Commission that

received large investments (more than EUR 100 million) through a public-private
partnership. It aims to build an open source software platform to ease the development
of new smart applications, including in the context of smart cities, by bringing together
several isolated European projects to develop solutions for the Future Internet. To
this end, the project specified a reference architecture composed of Generic Enablers
(GE), which are software components that implement general-purpose functions that
can be combined through open APIs to provide middleware facilities for application
development. Figure 2.3 shows FIWARE architecture overview presenting its GEs.

Figure 2.3: FIWARE architecture overview

6https://www.fiware.org/

2.3 | SMART CITY PROJECTS

19

FIWARE offers generic open specification for each of its GEs with essential
functionalities, interfaces, and APIs along with an open-source solution that
implements such specifications. One of the main advantages of FIWARE approach
is to use open standards, avoiding vendor lock-in and allowing the alternative
implementations of its GEs. Most of its components have a REST API compatible
with the NGSI7, a RESTful specification to exchange context information. FIWARE
categorizes its enablers as follows:

• Data/Context Management: components that aim at storing, gathering,
processing, and analyzing data at large scale. Currently, the project offers 10
different GEs of this category. The most notable implementations of this category
are:

– Orion8: implements the Publish/Subscriber Context Broker GE based on
NGSI specification.

– Cosmos9: implements the Big Data Analysis GE
– Proactive Technology Online10: implements the Complex Event Processing
(CEP) GE

• Internet of Things Services: components that provide the technical means
to enable sensor networks and routing sensor data to other GEs by adapting
IoT protocols and management functionalities for the devices. Thus, these GEs
are usually hosted on edge devices or IoT gateways. Currently, the project offers
6 GEs of this category. The most notable implementations of this category are:

– IoT Broker11: implements the IoT Broker GE that aims at separating IoT
applications from the underlying device installations

– IDAS12: implements the Backend Device Management GE that aims to be
a bridge between different IoT and Web protocols

• Advanced Web-based User Interface: components to design and develop
user interfaces including geographical information and 3D charts. This category
is composed of 13 enablers which are software engineering tools and libraries
to support the development of front-end applications, such as the following
implementation:

– Geoserver 3D13: implements the GIS Data Provider GE which is able to
host geographical data and serve it in 3D form to both mobile and web
clients

7Next Generation Services Interface
8https://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
9https://catalogue.fiware.org/enablers/bigdata-analysis-cosmos

10https://catalogue.fiware.org/enablers/complex-event-processing-cep-proactive-technology-
online

11https://catalogue.fiware.org/enablers/iot-broker
12https://catalogue.fiware.org/enablers/backend-device-management-idas
13https://catalogue.fiware.org/enablers/gis-data-provider-geoserver3d

20

2 | BACKGROUND AND RELATED WORK

• Security: components to define and enforce declarative security and privacy.
This category has 6 GEs available. The most notable implementations of this
category are:

– Keyrock14: implements the Identity Management GE covering a large num-
ber of aspects involving users’ access, including authentication from users
to device, authorization and trust management, user profile management,
and Single Sign-On (SSO)

– AuthZForce15: implements the Access Control GE that provides an API to
get authorization decisions based on authorization policies, playing a role
of a Police Decision Point (PDP)

• Applications/Services and Data Delivery: components and tools for data
visualization, easy generation of mashups and app-store-like distribution of
services and data. This category is composed of 8 GEs. The most notable
implementation of this category is:

– Wirecloud16: implements the Application Mashup GE that aims at allowing
end users without programming skills to easily create web applications and
dashboards/cockpits to visualize their data

• Cloud Hosting: components that aim at providing FIWARE services via cloud
infrastructure. This category has 9 GEs. The most notable implementations of
this category are:

– OpenStack17: implements the Cloud IaaS GE that provides the facilities to
provision virtual machines, as well as to associated compute, storage and
network resources

– Murano18: implements the Application Management GE that provides
a ready-to-use catalogue of applications that can be deployed in a
OpenStack19 cloud infrastructure

While some components have been developed within the context of the project,
other consolidated open source projects have been adopted as the reference implemen-
tation for some GEs, such as Open Stack, CKAN20, and Docker21. There are some
previously work in the literature that exploited FIWARE GEs components in various
domains(Cola et al., 2015; Salhofer, 2018; Steinmetz et al., 2017; Bellabas
et al., 2013). These works usually combine a small set of GEs to provide the basis
for the development of different prototype applications for end users. Such projects
demonstrate that smart applications can benefit from FIWARE components as reusable

14https://catalogue.fiware.org/enablers/identity-management-keyrock
15https://catalogue.fiware.org/enablers/authorization-pdp-authzforce
16https://catalogue.fiware.org/enablers/application-mashup-wirecloud
17https://catalogue.fiware.org/enablers/iaas-ge-fiware-reference-implementation
18https://catalogue.fiware.org/enablers/application-management-murano
19https://www.openstack.org
20https://github.com/ckan/ckan
21https://www.docker.com

2.3 | SMART CITY PROJECTS

21

building blocks. However, these works also evidence the technical disparity between
the different GEs in terms of technical quality, ease of integration, documentation, and
provided functionalities. For instance, the implementation of the FIWARE Context
Broker GE, Orion22, is the most used component of FIWARE architecture, while
several other components are rarely used.

To the best of our knowledge, no papers are reporting the use of FIWARE in its
entirety, which makes it difficult to understand its functional capabilities and project
scope as a platform for smart cities. Even though on the one hand the proposed
reference architecture can meet several requirements as a middleware platform, on
the other hand, there is little evidence to show that its implementation comes with
the claimed flexibility and interoperability. We have found only one previous work
that evaluated FIWARE performance and scalability properties through experimental
evaluation (Pereira et al., 2018). The authors focused on evaluating the publish-
subscribe communication model provided by FIWARE considering a large dataset
and a simple setup, which is basically a running instance of the Orion component.
Accordingly to their results, FIWARE performed significantly well in comparison
to another IoT middleware (OneM2M/ETSI M2M). However, as observed in other
studies, the authors only considered a small part of the FIWARE platform (one
reference implementation of its GE), which considerably limits conclusions regarding
the platform performance and scalability as a whole.

The modularization of FIWARE architecture into systems that cooperate through
web standards indicates the adoption of a Service Oriented Architecture (SOA).
Although the division of categories helps in understanding the architecture proposed
by FIWARE, a large number of options to compose an instance of the platform
and the overlapping of existing functionalities among several components make its
architecture extraordinarily complex. In addition, although the community provides
Docker images for each of the components to facilitate their deployment and running
environment, there is a considerable manual effort required to compose them (Cola
et al., 2015). Besides, several implementations of FIWARE GE are deprecated, and
there are no alternatives provided by the project community. Therefore, FIWARE
can be considered more as a reference architecture that indicates the main building
blocks for smart city platforms, proposing open source implementations for each of
these blocks, than a functional, integrated platform for smart cities that can properly
support the development of applications in various contexts.

DIMMER
Krylovskiy et al., 2015 presented the DIMMER23 project whose goal is to build

a service platform and applications to increase energy efficiency of a city at the district
level. Within the context of DIMMER project, they proposed the DIMMER platform,
a microservice-based IoT platform to support applications that aim at improving the
energy efficiency and management in cities. DIMMER is a key related work in the
context of this masters research since this is the only previous work we have found
that explores the use of a microservices architecture to build smart city platforms.

22https://github.com/telefonicaid/fiware-orion
23District Information Model and Management system for Energy Reduction

22

2 | BACKGROUND AND RELATED WORK

Among other needs and challenges inherent to the design of smart city platforms,
the DIMMER’s authors highlight the following points as the main motivators for their
adoption of the microservice architecture:

• The IoT infrastructure required to realize the vision of future smart cities
comprises a large variety of services with varying requirements, imposing the
need for smart city platform architectures able to support new services and
standards in the future

• Earlier successful IoT commercial and academic projects have successfully
adopted modernWeb and cloud standards to provide scalable distributed systems,
demonstrating several befits of the IoT and cloud integration

• Microservices architecture has already been used in other contexts than smart
cities, becoming the industry standard for building large-scale systems such as
Netflix24, Uber25, and Spotify26

DIMMER platform aims at supporting a variety of Web, mobile, and desktop
applications for different stakeholders and users. Figure 2.4 shows a high-level
representation of the DIMMER platform’s architecture, highlighting the set of its
most important microservices and encompassing underlying sensor technologies and
district information models. DIMMER microservices are divided into two categories:
Middleware Services and Smart City Services. The former include services to provide
modeling abstractions of underlying IoT devices, services to discovery city resources ,
and services to access historical and (near) real-time sensor data. The latter comprise
services that implement the core functionalities of the platform based on GIS27 and
BIM28 models, such as Energy Efficiency Engine, Energy Data Simulator, and Context
Awareness Framework.

DIMMER architecture implements a set of microservices design guidelines to
achieve a loosely-coupled, evolvable architecture. To provide convenient high-level
APIs for different customers, DIMMER used the API Gateway29 design pattern to
hide the communication details of background microservices and to offer a single entry
point for its facilities. They also explored the benefits of decentralized governance of
microservices by adopting different standards, policies, and technologies that are more
suitable for their job. Consequently, each microservice manages its data models backed
by distinct storage database systems and may also communicate through different
protocols (i.e., HTTP or MQTT).

Among other contributions regarding their early experience in adopting microser-
vices, Krylovskiy et al., 2015 also covered the impact of microservices architecture
on practical aspects. They highlighted that defining the service interfaces is the
fundamental step to enable decentralized development and governance of microservices.
Also, they observed a clear need for applying DevOps techniques to achieve a
sustainable, standardized operational process to deploy the entire DIMMER platform.

24https://netflix.com
25https://www.uber.com
26http://spotify.com
27Geographic Information Systems
28Building Information Models
29http://microservices.io/patterns/apigateway.html

2.3 | SMART CITY PROJECTS

23

Figure 2.4: DIMMER architecture overview

The DIMMER project brings significant contributions for smart city platforms due
to its pioneering experience in adopting microservices in the context of smart cities.
However, their work leaves several open questions that demand further experimental
and empirical studies to obtain more conclusive results on the adoption of microservices
in the design of smart city platforms, such as on issues related to scalability and
perfomance. Technically, we could not take advantage of their advances since DIMMER
is a proprietary software project. Our work has a broader scope, as the InterSCity
platform we are proposing in this research is designed to support smart city applications
from multiple domains and is fully developed as an open source project, as opposed
to the DIMMER platform.

The projects discussed above present tools and architectures to design smart city
platforms. However, most of the authors failed to either provide a thorough explanation
of how their architectures solve the scalability problems or perform scientific validation
of the scalability of the proposed platforms. Moreover, the widespread use and
development of closed source software limit the analysis of scalability and exploratory
work by the research community to just considering the discussions that were presented
in the original papers. To tackle these problems, this research deepens the debate
about the use of a microservices architecture on smart cities through the open-source
InterSCity platform. Importantly, we also present reproducible scientific experiments
to demonstrate the scalability of the platform. Table 2.1 summarizes the features
provided by the mentioned platforms in comparison to InterSCity, where NF stands
for Near Future and NC means that it is Not Clear whether the platform supports it.

24

2 | BACKGROUND AND RELATED WORK

T
ab

le
2.

1:
Sm

ar
t

C
ity

P
la

tfo
rm

s’
Fe

at
ur

es

Fe
at
ur
e

C
iv
ita

s
G
am

ba
s

A
lm

an
ac

O
pe

n
Io
T

Sm
ar
t
Sa

nt
an

de
r

Fi
wa

re
In
te
rS
C
it
y

D
at
a
M
an

ag
em

en
t

x
x

x
x

x
x

x
D
at
a
Pr

oc
es
sin

g
x

x
x

x
x

N
F

Io
T

In
te
gr
at
io
n

x
x

x
x

x
A
ct
ua

tio
n
Su

pp
or
t

x
N
C

x
C
on

te
xt

Aw
ar
en
es
s

x
x

x
x

x
C
ity

A
bs
tr
ac
tio

ns
x

x
SE

.T
oo

ls
x

x
x

Sp
ec
ifi
c-
do

m
ai
n
Se
rv
ic
es

x
C
lo
ud

-n
at
iv
e

x
x

x
x

x
Sc
al
ab

ili
ty

x
x

x
In
te
ro
pe

ra
bi
lit
y

x
x

x
x

x
x

Se
cu
rit

y
x

x
x

x
x

x
Pr

iv
ac
y

x
x

x
x

x
A
da

pt
at
io
n

x
x

Ev
ol
va
bi
lit
y

x
N
C

N
C

x
x

Pr
od

uc
tio

n
D
ep
lo
ym

en
t

x
N
C

N
F

Ex
pe

rim
en
ta
lE

va
lu
at
io
n

x
Fr
ee
/O

pe
n
So

ur
ce

x
x

x

25

Chapter 3

The InterSCity Platform

Future smart cities will demand high-quality research in multiple areas. The
InterSCity project (Batista et al., 2016) is carried out by a multidisciplinary
consortium that aims to develop scientific and technological research to address
key challenges related to the software infrastructure of smart cities, focusing on
Networking and High-Performance Distributed Computing, Software Engineering, and
Analysis and Mathematical Modeling for the Future Internet and Smart Cities. The
project started in the end of 2016, bringing together researchers from different areas
aiming at enabling the development of reusable open-source technologies and methods
to support future smart cities while advancing the state-of-the-art in the field.

This chapter presents the InterSCity platform1, an open-source, microservices-
based middleware to support the development of smart city applications and to enable
novel, reproducible research, and experiments in this field. The platform was designed
from the outset following the reference architecture for smart city platforms proposed in
(Santana et al., 2017). This reference architecture aims at guiding the development of
next-generation smart city platforms by describing and organizing the major building
blocks required to meet the wide range of functional and non-functional requirements
described in Section 2.1. By implementing key building-blocks of this architecture, the
InterSCity Platform covers the major features required to support integrated smart
city applications in different domains, such as public transportation, public safety,
and environmental monitoring. Currently, the InterSCity Platform provides a set of
high-level cloud-native services to manage heterogeneous IoT resources, data storage
and management, and context-aware resource discovery.

3.1 Design Principles
The integration of the smart city enablers, such as the Internet of Things,

Big Data, and Cloud Computing, is not straightforward, as these areas evolve
rapidly and their combination raises complex issues. This brings new challenges,
approaches, and dynamics that result in the constant emergence of novel technologies,
standards, and services. Smart city applications further enhance the dynamism of
the involved technologies, since they encompass complex environments composed of

1The source code is available online on https://gitlab.com/smart-city-software-platform under the
MPL 2.0 license

https://gitlab.com/smart-city-software-platform

26

3 | THE INTERSCITY PLATFORM

several interconnected subsystems which are constantly evolving and presenting new
challenges. Such dynamism impacts several design decisions in smart city platform
architectures. In particular, we intend to address scalability and evolvability issues in
smart city platforms research and development.

Here, we present the design principles adopted in the InterSCity Platform which
are aligned with microservices patterns, which are critical for the wide adoption of
the platform in different smart city projects.

• Modularity via Services. Modularity is a key concept used in software
architecture to divide systems into smaller functional units. Microservice
architectures achieve modularity through single-purpose, small services that
communicate through lightweight mechanisms to achieve a common goal.

• Distributed Models and Data. In monolithic architectures and even in
traditional service-oriented systems, it is fairly common to create a unified
domain model and a centralized storage backend. With microservices, each
service has its own database and models, which may evolve independently of
external services. Decentralized data management and the possibility to use
different technologies that best fit each context are relevant advantages. On the
other hand, increased operational complexity is the main drawback.

• Decentralized Evolution. Microservices must be autonomous, providing
well-defined boundaries and communication APIs so that they can evolve
and be maintained independently. Moreover, this principle ensures that each
service may implement its functionalities using the most appropriate technology,
provoking positive technology heterogeneity. Similarly, each microservice may
scale independently using different strategies, since scalability requirements vary
across services. Finally, this design principle should reflect on the configuration
and deployment procedures, which may be performed independently as well.

• Reuse of Open Source Projects. Reusing software components is a
fundamental practice of software engineering to achieve productivity, cost
effectiveness and software reliability. We always give preference to the use
of existing robust open-source tools, libraries, and frameworks instead of
implementing components from scratch, since the quality of popular open-source
packages is admittedly good as already empirically observed (Taibi, 2013).
Moreover, we adopt a rigorous technology selection criteria and only incorporate
open source components that have an active developer community, stable release
support, and appropriate documentation to guide usage, development, and
deployment.

• Adoption of Open Standards. As important as the reuse of open-source
projects is the adoption of open, well-accepted standards that are designed to
provide interoperability at different levels. This prevents technology and vendor
lock-in. The use of open Internet and web standards is essential to enable the
true Internet of Things, being widely used in related projects found in the
literature (Fazio et al., 2012; Amaral et al., 2015; Hernández-Muñoz et al.,
2011).

3.2 | PLATFORM ARCHITECTURE

27

• Asynchronous versus Synchronous. Although most services provide REST-
ful APIs, they must implement asynchronous messaging as much as possible to
avoid blocking in synchronous request-reply interactions. Asynchronicity should
be achieved by using notifications, the publish/subscribe design pattern, and
event-based communication strategies to support low latency and scalability.
Besides, the platform must rely on a lightweight message bus with the single
purpose of providing a reliable messaging service rather than traditional SOA
approaches that use sophisticated, heavy middleware such as an Enterprise
Service Bus (ESB).

• Stateless Services. This design principle supports scalability by advocating
that services should be stateless to enable any service instance to respond to
any request, facilitating load distribution and elasticity. Thus, the design of
microservices should separate state data, such as context and session data, to
be managed by an external component whenever possible.

During this masters research, we applied the above design principles aiming at
meeting a scalable architecture. Moreover, these principles were fundamental to achieve
an evolvable architecture that can be further improved.

3.2 Platform Architecture
The InterSCity microservices architecture is shown in Figure 3.1, addressing

important aspects of IoT and Data management, providing high-level RESTful services
to support the development of smart city applications, services, and tools for different
purposes. The underlying IoT Gateways can register new devices to the platform and
send sensor data through a REST API. InterSCity abstracts the complexity involved
in the communication between smart city applications and IoT devices, as well as the
complexity of city-scale data management.

InterSCity provides well-defined boundaries to communicate with both IoT devices
and smart city applications. Currently, the platform is composed of six different
microservices that provide features for the integration of IoT devices (Resource
Adaptor), data and resource management (Resource Catalog, Data Collector, and
Actuator Controller), resource discovery through context data (Resource Discovery) and
visualization (Resource Viewer). Although all microservices expose REST APIs for
synchronous messaging over HTTP, most of the communication for the composition
of services is done through asynchronous calls, relying on the lightweight message
bus RabbitMQ2 for asynchronous messaging through the Advanced Message Queuing
Protocol3 (AMQP).

Interactions between the platform and its clients involve the manipulation of city
resources. A city resource is a logical concept that encapsulates a physical entity that
makes up the city, such as cars, buses, traffic lights, and lampposts. Resources comprise
attributes (e.g., location and description) and functional capabilities to provide data
and receive commands, which are respectively supported by sensors and actuators

2www.rabbitmq.com
3www.amqp.org

28

3 | THE INTERSCITY PLATFORM

Figure 3.1: The InterSCity Platform Architecture.

coupled to the resource. This approach facilitates the interaction of client applications
with a real city environment since it grants an abstraction composed of city concepts
rather than the cyber-physical particulars, that comprise the underlying IoT layers of
Smart City ecosystems. As a consequence, for instance, two buses registered in the
platform are accessed through the same standardized API regardless of their devices
and communication technologies. Likewise, two physical sensor or actuator devices
with similar purposes are encapsulated as a common capability, abstracting all the
specific details related to data representation and deployment of these devices. Such
strategy could be compared to the duck typing strategy used by modern programming
languages, such as Python and Ruby4.

Similarly, the underlying IoT Gateways must use the city resource and capability
abstractions. Thus, define how to model a resource and its capabilities is one of the
responsabilities of IoT Gateway developers. For example, in some cities, there are
buses equipped with GPS and other sensors that can monitor their speed, current
occupation, and internal temperature. If we model each bus as a city resource, we have
two different possibilities to model its capabilities. First, we could define four different
capabilities without any relation between this information, except for belonging to
the same resource. This strategy is suitable especially if the data is collected and
sent at different time intervals. The second strategy could be register a single generic

4https://en.wikipedia.org/wiki/Duck_typing

3.3 | DESIGN DETAILS TO ADDRESS SCALABILITY

29

capability (i.e., bus_monitoring) that encompasses the data from the four sensors,
creating a temporal link between them. This approach enables client applications
to retrieve all the state of the bus at any given time easily since it does not require
further efforts to define temporal correlation. Also, it boosts the publishing and using
of resource context data rather than raw sensor data. Both strategies could be used for
data that is collected from the occurrence of events rather than periodically, depending
on the amount of information that is read in each event. For instance, a bus could
trigger an event when it breaks, informing its location and occupation through a single
capability (i.e., bus_failure) since this two information is useful for city managers to
take contingency actions to supply the demand of the broken bus.

Although the city resources and capabilities abstractions provided by the InterSCity
platform are simple, they introduce a flexible semantics that can encompass a large
number of services, sensors, and actuators. However, such flexibility also may lead
to the proliferation of ambiguous and redundant capabilities. In this sense, we have
prepared a guide on how to model the city’s resources and define the names of available
capabilities. This guide is handy online in the InterSCity’s documentation repository5.

3.3 Design Details to Address Scalability
Scalability is a key non-functional requirement for smart city platforms. InterSCity

was primarily designed to support smart city with a large number of users, data, and
services. InterSCity leverages the microservices architecture as the main strategy to
achieve scalability due to four fundamental reasons, which we will explore in more
detail later:

• Functional Decomposition - the microservices architecture promotes modu-
larity via single-purpose, small services that communicate through lightweight
mechanisms to achieve a common goal. Also, functional decomposition leads to
scalability as the system workload is split among distributed microservices;

• Communication Style - microservices cooperate through well-defined com-
munication mechanisms and provide cohesive APIs for external access;

• Design and Technology Heterogeneity - different design and technology
decisions can be made for distinct microservices, although they do not exclude
general choices that consider the whole system; and

• Independent Deployment - each microservice can be deployed, replicated,
and replaced independently.

3.3.1 Functional Decomposition
By implementing a microservices architecture, the InterSCity platform decomposes

its functionalities across a set of small, interconnected, collaborative services. The
InterSCity architecture supports decentralized management of city resources dividing

5https://gitlab.com/smart-city-software-platform/docs

https://gitlab.com/smart-city-software-platform/docs

30

3 | THE INTERSCITY PLATFORM

functional responsibilities and data persistence across the microservices. The Resource
Adaptor is a proxy microservice that simplifies the communication of external IoT
systems with the rest of the platform. It provides a single entry point for the underlying
IoT gateways to register and update resources on the platform, post sensed data from
those resources, and subscribe to events that indicate actuator commands. As a proxy,
Resource Adaptor is responsible for validating the requests, augmenting them with
additional metadata and required adaptations. The adaptor either broadcasts the
requests to the entire system or calls a specific microservice to handle the request
synchronously.

The Resource Catalog is a vital microservice of the InterSCity architecture since it
manages the static data of city resources, working as a catalog for these resources.
After registering a new resource, the Resource Catalog assigns it a new Universally
Unique IDentifier (UUID) (Leach et al., 2005) and asynchronously notifies the event
of resource creation to other microservices. Both client applications and IoT gateways
must use the UUID in later interactions that target a specific resource, such as to get
and publish sensor data.

City resources may have functional capabilities to provide data and receive
commands, which are respectively supported by sensors and actuators coupled
to the resource. InteSCity splits the management responsibilities of sensors and
actuators between two microservices: Data Collector and Actuator Controller. The
Data Collector microservice stores sensor data collected by city resources. Sensor data
consist of context information or an event linked to a resource capability which is
observed at a particular time. Data Collector provides an API to allow access to
both current and historical context data of city resources using a rich set o filters
that can be accessed in search endpoints. The Actuator Controller microservice, in
turn, provides standardized services to intermediate all actuation requests to city
resources with actuator capabilities. It is responsible for receiving and validating
actuator requests from clients and asynchronously notifying the underlying IoT
gateway through Webhooks. Also, this microservice records the history and tracks
the status of actuation requests that are available through its API, e.g., for auditing
purposes.

Both the Resource Discovery and the Resource Viewer microservices provide more
sophisticated services by orchestrating Data Collector and Resource Catalog. Resource
Viewer is a web visualization microservice for presenting city resources information
graphically based on Resource Catalog and Data Collector back-end services. The
purpose of Resource Viewer is to present general and administrative visualizations of
city resources, including location, real-time context data, and representative charts of
historical data. The Resource Discovery microservice provides a context-aware search
API that may be used by client applications to discover available city resources. This
API provides filters that can be combined to discover resources. For instance, filters
can combine information such as location data, interval rules for current context data,
and other types of meta-data. More details of each microservice are presented later in
this chapter.

As a result of its functional decomposition, the workload of InterSCity is handled
by separate distributed services, cooperating for its scalability. The partitioning of
the system workload is also reflected on the database tier since each microservice

3.3 | DESIGN DETAILS TO ADDRESS SCALABILITY

31

has its database and manages a small set of the system’s data. Different smart city
contexts may lead to different ways of splitting the workload of the platform among
its microservices in a non-uniform way. For instance, in a city with a large number
of sensors, two microservices of the InterSCity platform may be used more often:
Resource Adaptor and Data Collector. In another type of scenario, a city with actuator
resources might have management systems that send actuation commands to the
underlying IoT devices, thus placing a higher demand on Actuator Controller.

3.3.2 Communication Style
The InterSCity microservices need to cooperate constantly to provide the services

for client applications and enable the integration of underlying IoT devices and services.
Design decisions regarding the communication mechanisms of the system is a major
concern to the system scalability since they may impact on the overall performance.
Decisions on how microservices interacts with the whole ecosystem of the platform
may comprise the choice of communication protocols, the discovery of other services,
and the handling of asynchronous messages, to name a few.

InterSCity implements two fundamental communication mechanisms to support
the scalable orchestration of its microservices: (1) Synchronous communication over
HTTP and (2) Asynchronous messaging through the AMQP6.

For HTTP communication, we applied the API Gateway design pattern7 by using
Kong8, a distributed, scalable open-source gateway that aims at facilitating the
orchestration of microservice APIs. Kong is backed by NGINX9 and extends its HTTP
Web server features to offer a dynamic management layer for the microservices HTTP
APIs. In summary, the API Gateway receives all incoming HTTP requests, determines
which InterSCity microservice should respond to a specific request, and forwards the
request to the identified microservice. For this purpose, we use URI-based rules, where
the system uses the path part of HTTP requests to identify the target microservice of
a request. Figure 3.2 illustrates this strategy, highlighting the interaction of a client
application and an IoT Gateway with the platform through the HTTP APIs of its
microservices, which in turn are accessed via the API Gateway.

A clear advantage of implementing the above-mentioned API Gateway strategy is
that clients only need to interact with a single entry point (host address and port) to
access all InterSCity facilities, instead of keeping references to multiple microservices.

The API Gateway also enables scalability as it leverages the load balancing feature
of NGINX so that it is possible to deploy multiple instances of the same service easily.
Figure 3.3 illustrates this by presenting the main interactions among clients, the API
Gateway, and the available microservice instances. Whenever we run a new instance of
a microservice, the microservice uses Kong’s REST API, which is an implementation
of the Self-registration design pattern10, to register itself with Kong as a target for
an existing URI rule. In the example, distinct Resource Catalog instances register
themselves as targets for requests that match the /catalog URI rule, indicated by the

6https://www.amqp.org
7http://microservices.io/patterns/apigateway.html
8https://getkong.org
9https://www.nginx.com

10http://microservices.io/patterns/self-registration.html

https://www.amqp.org
http://microservices.io/patterns/apigateway.html
https://getkong.org
https://www.nginx.com
http://microservices.io/patterns/self-registration.html

32

3 | THE INTERSCITY PLATFORM

Figure 3.2: InterSCity API gateway

black arrows. This approach enables the dynamic creation of new instances of a service
to split and distribute the increasing workload using a round-robin strategy, without
affecting other parts of the system or requiring further reconfiguration. Round-robin
load balancing is represented by the blue and yellow arrows in Figure 3.3.

The API Gateway constantly monitors the availability of target instances by health
checking the endpoints in order to adjust its load balancing accordingly by not sending
new requests to unhealthy nodes. It identifies microservice instances as healthy or
unhealthy based on the status code in HTTP responses. A success code indicates a
healthy endpoint, whereas non-success status codes, timeouts and TCP errors denote
an unhealthy endpoint.

Figure 3.3: InterSCity load balancing HTTP requests

As Kong allows the registration of service instances, the API Gateway also supports

3.3 | DESIGN DETAILS TO ADDRESS SCALABILITY

33

the Server Side Discovery design pattern11. This pattern facilitates HTTP-based
communication among microservices in the platform since instead of having to manage
references to all running instances, clients need to know only the address of the API
Gateway, using URI-based rules to communicate with the target microservice, as
shown in Figure 3.2. A direct advantage of using the API Gateway design pattern
is the guarantee that requests for a given microservice will be handled by any of
its instances in an independent way, allowing for efficient load-balancing. This is
an important feature since the number of service instances and their locations may
change dynamically.

Although services provide well-defined RESTful APIs, we adopt asynchronous
communication whenever possible to avoid the additional latency of blocking
synchronous request-reply interactions. In this context, a microservice may use the
publish/subscribe design pattern rather than directly exchanging messages with other
services. InterSCity carries out asynchronous messaging by using RabbitMQ12, a
widely used lightweight, open-source messaging middleware that implements the
AMQP protocol.

Events of different types may generate data that need to be broadcast to other
modules in the platform. Examples are the registration of a new IoT resource, the
reception of sensor data, and requests to actuators. Each type of event is mapped to
a topic, to which interested services can subscribe to receive new messages through
queues maintained by RabbitMQ. By default, each subscription will create a new
queue. Messages sent to a specific topic are pushed to all of its subscribed queues.

InterSCity thoroughly exploits RabbitMQ messaging features by using routing
keys that enable the use of more sophisticated criteria to route messages to subscribers.
A routing key is a list of dot-separated words related to metadata about InterSCity’s
internal abstractions. They are added by publishers when sending messages to
RabbitMQ. When a city resource publishes sensor data on the platform, a new
message is published on topic data_stream with a routing key of the form
uuid.capability.others, where uuid is the unique identifier of the resource, the
capability is the type of the sensor data, and others represent any additional information
regarding the posted sensor data that could also be used to build the routing key. In
this sense, subscribers must inform a binding key when defining a queue to receive
messages from a topic.

Binding keys may use wildcard characters based on two special characters, as
explained in RabbitMQ’s documentation13:

• * (star): can substitute for exactly one word.

• # (hash): can substitute for zero or more words.

Figure 3.4 shows an example of an InterSCity topic-based message exchange using
routing keys. When the Resource Adaptor receives sensor data from the underlying
IoT infrastructure, it publishes the data on topic data_stream, which has consumer
queues for Data Collector, Resource Catalog, and other services interested on the topic.

11http://microservices.io/patterns/server-side-discovery.html
12https://www.rabbitmq.com
13https://www.rabbitmq.com/tutorials/tutorial-five-python.html

http://microservices.io/patterns/server-side-discovery.html
https://www.rabbitmq.com
https://www.rabbitmq.com/tutorials/tutorial-five-python.html

34

3 | THE INTERSCITY PLATFORM

As Data Collector is responsible for saving the history of sensor data, it is interested on
any data on this topic (binding key: #). On the other hand, Resource Catalog is only
interested in sensor data that contain geolocation information so that it can update
the location of moving city resources on its database (binding key: #.location.#).
Other microservices could be interested in any data from a specific type of sensor,
such as temperature data (binding key: *.temperature.#), regardless of which city
resource provided the data.

Figure 3.4: InterSCity Asynchronous messaging

Additionally, to decrease the latency of communication among microservices,
InterSCity leverages asynchronous messaging to support scalability by adopting a
worker-based strategy. InterSCity services that need to receive asynchronous messages
from the platform must implement a background worker for each subscribed topic on
RabbitMQ. By design, these services support the addition of more workers to improve
the processing rate of the queued jobs by implementing the Competing Consumers
design pattern (Hohpe and Woolf, 2003). Figure 3.5 presents this design pattern,
where additional workers read messages from the same queue concurrently and as fast
as possible, enabling parallel processing of background tasks. As workers read from
the same queue, messages are not replicated for each of them. Consequently, in the
example, messages X and W will be processed in this order by the first two workers
that finish their current jobs, represented by messages Y, Z, and A.

Figure 3.5: Competing Consumers design pattern

3.3 | DESIGN DETAILS TO ADDRESS SCALABILITY

35

In addition to scalability, the above design decisions regarding InterSCity
communication style led to the implementation of a flexible and evolvable architecture.
The loosely coupled message-oriented communication approach favors the continuous
development of the platform, enabling the extension of existing features through
service composition and the addition of new microservices to meet the constantly
evolving smart city requirements. Moreover, decoupled communication interfaces allow
us to maintain microservices in separate code repositories enabling: decentralized
version and dependency management, independent, faster tests, safe refactoring, the
evolution of existing features, and the adoption of the most appropriate technologies in
each context. The lower boundary provided by Resource Adaptor enables InterSCity to
integrate heterogeneous IoT technologies without affecting other services continuously.
It can also be used to incorporate the existing legacy ICT infrastructure of cities, such
as open data initiatives. It is worth noting that InterSCity’ upper API isolates client
applications from the modification or addition of new technologies in the smart city
infrastructure.

3.3.3 Design and Technology Heterogeneity
Since microservices communicate via standardized protocols, each microservice

can be built with the most appropriate stack of technologies for its purpose. They
can also be maintained in separate repositories, enabling polyglot persistence and
technology diversity. With this in mind, Table 3.1 shows the technologies used by
InterSCity services.

Table 3.1: Technology Stack of InterSCity Microservices

Microservice Language Framework Database Cache
Actuator
Controller Ruby Ruby on Rails MongoDB

Data
Collector Ruby Ruby on Rails MongoDB In-memory MongoDB

(Percona)

Resource
Adaptor Ruby Ruby on Rails PostgreSQL Redis

Resource
Catalog Ruby Ruby on Rails PostgreSQL Redis

Resource
Discovery Ruby Ruby on Rails

Resource
Viewer Javascript EmberJS

Although we embrace the diversity of technologies in InterSCity, we apply this
principle with some caveats to avoid increasing overall system complexity, and the
proliferation of practical problems since a radical adoption of technology diversity
could lead to an unmaintainable architecture (Balalaie et al., 2016). For this

36

3 | THE INTERSCITY PLATFORM

reason, we initially opted to use Ruby-based tools to develop the fundamental services
of the platform due to the high productivity and flexibility of this language and
the easy learning curve for newcomers who aim to contribute with the InterSCity
codebase. Technological and design aspects related to contributions in the form of
new microservices are discussed with the project team and may use other technical
options according to their purpose. However, if the new microservices are supposed
to be maintained within the main platform repository, they must have at least one
maintainer that has fluency in the adopted technologies and must conform to the
quality requirements of the project, such as having highly automated test coverage.

Initially, we adopted PostgreSQL14 in all microservices as it is widely adopted in
the software industry and it supports georeferenced queries, which are essential in the
smart city domain. However, we moved towards the plurality of database systems
to better fit the scope of each microservice and to adequately support horizontal
scalability so that the database layer does not become a bottleneck. For example, we
migrated the database infrastructure of the Data Collector and Actuator Controller
microservices to MongoDB15, a NoSQL database system that is more appropriate for
databases with flexible schemas and non-normalized databases.

In addition to technology stack, several other decisions may affect the internal
implementation of a service, such as the use of caching mechanisms, database schema
and indexing, the choice of algorithms, and API design. Each microservice will be
required to scale at different paces depending on both the specificities of the urban
and technological context and the continuously increasing demands. Although the
loosely coupled architecture allows microservices to scale out independently, different
design strategies must be applied to overcome their own traits to achieve horizontal
scalability. Table 3.2 summarizes the scalability strategies currently supported by
InterSCity microservices, indicated by X and points out new strategies that could be
supported in the near future, denoted by NF, which are mapped as future work for
the next stages of the InterSCity project.

Deployment of the InterSCity platform may have several instances of each of
its microservices behind Kong’s load balancer to handle higher loads transparently
for customers. Services that receive asynchronous messaging, such as Data Collector,
Actuator Controller, and Resource Adaptor, are designed to support the addition of
more background workers to handle highly intensive demands for event-based jobs.
Data Collector also uses database caching through an in-memory MongoDB instance
to provide low-latency readings of the latest data collected by city resources, while
Resource Catalog use Redis16 to cache static data of most accessed city resources. In
the future, the Resource Discovery could cache static resource meta-data provided by
the Resource Catalog, since they do not change very often.

Currently, we did not support database sharding for any of our microservices.
Even though, we mapped the use of this strategy for future work as it is a pontential
approach for scaling the writes in the database. A database shard consists in a
horizontal partition of data among several distributed instances of the database
(shards). To achieve database sharding, each microservice needs to define a mechanism

14www.postgresql.org
15https://www.mongodb.com
16www.redis.io

3.3 | DESIGN DETAILS TO ADDRESS SCALABILITY

37

Table 3.2: Scalability strategies supported by InterSCity microservices

Microservice HTTP
Load Balancer

Background
Workers Caching Database

Sharding

Resource
Adaptor X X

Resource
Catalog X X NF

Data
Collector X X X NF

Actuator
Controller X X

Resource
Discovery X X

Resource
Viewer X NF

to route write and read operations to the proper database instance to achieve a
satisfactory load balancing. For instance, if a single InterSCity instance is used for
multiple cities, it could have a database shard for each city to properly distribute the
database operations.

3.3.4 Independent Deployment
An important aspect of the InterSCity architecture is that its components are

designed as single-purpose, independently deployable services. In this sense, two sets of
deployment-related design decisions need to be considered: those related to the entire
system, and those that concern individual microservices. The former are decisions
related to the choice of cloud provider, to the allocation of computing resources for
the system, to the packaging of service instances (i.e., virtual machines, containers,
and physical hosts), to the handling of common procedures (e.g., update, backup, and
monitoring), and to the deployment of complementary services used by the system
(e.g., databases, message brokers, and proxies). The latter concerns the distribution of
microservice instances across the available hosts (e.g., single service per host, multiple
services per host), service configuration, failure recovery, and scaling of a microservice
to appropriately respond to an increasing workload.

The above examples of decisions related to the deployment of microservices-based
systems highlight the multiple trade-offs and challenges faced by engineers, as also
observed in (Balalaie et al., 2016). In this sense, DevOps techniques and tools are
essential to achieving a reliable and reproducible deployment process, as well as to
improve the operating environment (Newman, 2015; Balalaie et al., 2016). The
inherent complexity of a distributed microservices environment requires the use of

38

3 | THE INTERSCITY PLATFORM

such techniques to automate the necessary procedures. These include automated tests
and the upgrading of microservice instances in the production environment, as well
as support for more complex tasks, such as scaling and distributing microservices
automatically based on the monitoring of services and computational resources.

Thus, we encapsulated microservices into individual Docker17 lightweight containers
which can be deployed and maintained independently. Continuous integration tools
play an important role in the automated execution of both individual and integration
tests, and to ensure that container images are built correctly along the development of
microservices. To perform automated, consistent, remote deployments in a predefined
set of virtual machines, we adopted the Ansible18 automation engine, which provides
a set of configuration management tools and scripts, facilitating the deployment of
the InterSCity platform and associated applications. We used these tools to deploy an
online instance of the InterSCity which is available in http://playground.interscity.org/.
However, InterSCity is designed to leverage cloud-native facilities, such as scalability
and elasticity. Thus, alternatively to Ansible, we use Kubernetes19 to support the
deployment of Docker containers throughout a cluster of virtual machines in a cloud
infrastructure.

Kubernetes is an open source project that aims at automating the management
of container-based applications by offering tools for supporting two critical tasks.
First, it provides a declarative structure through YAML files for developers to define
the desired state for the containers that comprise the managed system (Joy, 2015)
in compliance with the Infrastructure as Code (IaC) principle, one of the pillars of
DevOps (Hummer et al., 2013). Second, the Kubernetes engine runs the specified
configuration on the cloud provider to manage the deployment of the system by
scheduling containers across the available machines.

In dynamic smart city contexts, with varying demands throughout the day and
random citizen behavior, InterSCity must be able to individually scale out the stressed
services to properly support workload fluctuations, rather than scaling the entire
system as a whole. As we designed InterSCity microservices as stateless services,
we can place several copies of the same microservice behind a load balancer (i.e.,
Kong). Likewise, multiple instances of the same microservice leverage the worker-based
approach to distribute processing jobs across asynchronous workers. By monitoring
computational resources used by the platform microservices, Kubernetes is capable
of adjusting the number of instances for each microservice to adequately support a
varying workload automatically. Ideally, the microservices should scale automatically
allocating resources based on either forecasting models(Moura et al., 2016) or more
reactive actions based on changing demands. However, allocating more resources for
the system may also be performed manually. In our experiments to evaluate the
InterSCity scalability, described in Chapter 5, we used both approaches.

17https://www.docker.com
18https://www.ansible.com
19https://kubernetes.io/

http://playground.interscity.org/
https://kubernetes.io/

3.4 | MICROSERVICES

39

3.4 Microservices
In this section, we detail the microservices that comprise the initial architecture of

the InterSCity platform. It is worth noting that since this is an early implementation
of the InterSCity architecture, there may be significant design changes in the future,
including the addition of new microservices, API improvements, the creation of new
abstractions, to name a few. As discussed earlier, the proposed architecture encourages
the realization of these changes due to its flexibility and evolvability properties. As we
detail each microservice, we also discuss existing problems due to the misapplication
of the design principles presented in Section 3.1.

Although all microservices have received external contributions due to our open
source approach, the vast majority of the technical development of the initial InterSCity
microservices are technological outputs from this master’s research effort.

3.4.1 Resource Adaptor
The Resource Adaptor microservice is responsible for providing a single point of

entry for underlying IoT Gateway. Thus, it receives all requests from IoT Gateway,
validates their inputs, and either calls another microservice to handle the request
if it needs a synchronous response or publishes messages to RabbitMQ. Thus, this
microservice provides endpoints to register new city resources, post sensor/context
data, and to subscribe for receiving actuator commands through WebHook.

The following are the main HTTP endpoints provided by Resource Adaptor. For
more details on all available endpoints for this microservice, check the online API
documentation20.

POST /adaptor/resources

IoT Gateway must use this endpoint to register a new city resource with a JSON
body containing the resource’s metadata, such as description, capabilities, and location,
as shown by Figure 3.6.

1 {
2 "data": {
3 "description": "A public Hospital",
4 "capabilities": [
5 "medical_procedure",
6],
7 "lat": -23.559616 ,
8 "lon": -46.731386
9 }

10 }

Figure 3.6: Example of Input JSON to Register a City Resource.

After validating the input json, the Resource Adaptor redirects the original request
to a similar endpoint of Resource Catalog (POST /catalog/resources) which is

20http://playground.interscity.org

http://playground.interscity.org

40

3 | THE INTERSCITY PLATFORM

responsible for registering the resource on its database and notify the rest of the
platform through RabbitMQ. Also, Resource Catalog generates a UUID for the new
resource which must be used for future interactions with the platform. However, an IoT
Gateway may also suggest a UUID for the new resource by including it on the input
JSON. Figure 3.7 shows the output JSON for a valid resource which contains the fields
provided in the original request, the new UUID, and additional location data inferred
from latitude and longitude, such as the country, state, city, and neighborhood.

1 {
2 "data": {
3 "uuid": "45b7d363 -86fd -4f81 -8681 -663140 b318d4",
4 "country": "Brazil",
5 "state": "Sao Paulo",
6 "city": "Sao Paulo",
7 "neighborhood": "Butanta",
8 "description": "A public Hospital",
9 "capabilities": [
10 "medical_procedure",
11],
12 "status": "active",
13 "lat": -23.559616 ,
14 "lon": -46.731386 ,
15 "created_at": "2018 -03 -21 T16 :23:00.312Z",
16 "updated_at": "2018 -03 -21 T16 :23:00.312Z"
17 }
18 }

Figure 3.7: Example of Response for the Request to Register a Resource.

POST /adaptor/resources/{uuid}/data

IoT Gateway must use this endpoint to send context data from city resources to
the platform. For this purpose, they must inform the resource’s UUID in the URL.
Figure 3.8 shows an example of input JSON for this endpoint. With a single request,
it is possible to publish data of multiple capabilities as well as more than one reading
at a time. Each unique context data requires a timestamp which denotes the moment
the data were collected.

Context data may vary widely in terms of both information collected and data
structure. In this sense, InterSCity allows IoT Gateway to publish different types
of data allowing each capability to include one or more fields. In the example of
Figure 3.8, there are three integer fields inside the environment_monitoring capability
as well as bus_monitoring capability which contains a more complex data: the location
field.

After validating the input JSON, Resource Adaptor separates each context data,
adds some metadata, and publishes them individually in RabbitMQ allowing other
interested microservices to use them. For example, Data Collector will save all provided
data, while Resource Catalog will only use data tagged for location update since it is
responsible for handling resources’ location.

3.4 | MICROSERVICES

41

1 {
2 "data": {
3 "environment_monitoring": [
4 {
5 "temperature": 10,
6 "humidity": 45,
7 "pressure": 25,
8 "timestamp": "2017 -06 -14 T17 :52:25.428Z"
9 },

10 {
11 "temperature": 20,
12 "humidity": 64,
13 "pressure": 25,
14 "timestamp": "2017 -06 -14 T17 :57:25.428Z"
15 }
16],
17 "bus_monitoring": [
18 {
19 "location": {
20 "lat": -10.00032 ,
21 "lon": -23.200223
22 },
23 "speed": 54,
24 "bus_line": "875C-10-1",
25 "timestamp": "2017 -06 -14 T17 :52:25.428Z"
26 }
27]
28 }
29 }

Figure 3.8: Example of Input JSON to Publish Context Data.

POST /adaptor/subscriptions

If a managed resource has actuator capabilities, the IoT Gateway must subscribe
to receive actuator commands for that resource through WebHooks. Accordingly, the
platform will send a HTTP POST request with the actuation command details in a
JSON body that subscribed IoT Gateway must handle. Figure 3.9 shows an example
of input JSON to this endpoint which is quite simple since it only has the UUID of
the resource, the list of actuation capabilities to subscribe, and the URL that will be
used by InterSCity to notify actuation commands.

InterSCity will keep background workers to perform the HTTP requests for
subscribers on actuation commands, which will send a POST request on the informed
URL with a JSON such as shown in Figure 3.10. As the sensor data, actuation
commands have dynamic structure.

3.4.2 Resource Catalog
The Resource Catalog microservice handlers resources’ static data, available

capabilities, and resources location. It has a relational database based on PostgreSQL
and relies on Redis for caching. This microservice does not depend on other

42

3 | THE INTERSCITY PLATFORM

1 {
2 "subscription": {
3 "uuid": "45b7d363 -86fd -4f81 -8681 -663140 b318d4",
4 "capabilities": [
5 "illuminate"
6],
7 "url": "http :// myendpoint.com"
8 }
9 }

Figure 3.9: Example of Input JSON for Actuation Subscription.

1 {
2 "action": "actuator_command",
3 "uuid": "0dbdae10 -4156 -4433 -9291 -5 d261eb0d8eb",
4 "url": "http :// myendpoint.com",
5 "capability": "illuminate",
6 "created_at": "2017 -06 -07 T20 :16:16.348Z",
7 "command": {
8 "intensity": "high",
9 "status": "on"
10 }
11 }

Figure 3.10: Example of Webhook JSON Body.

microservices, but it publishes new data in RabbitMQ on either resources creation or
resource update.

Admittedly, Resource Catalog violates the Single Responsibility principle reflecting
in the size of its interface. We mapped out as future work the creation of a new
microservice to handle the specificities of geolocation-based features and use the most
appropriate technologies for this purpose, such adding support for GeoJSON format,
described at RFC 7946 (Butler et al., 2016), as it encodes a variety of geographic
a single point of entry for underlying IoT Gateway. In the following, we detail the
endpoint to search for resources. For more details on all available endpoints for this
microservice, check the online API documentation21.

GET /catalog/resources/search

This is the main endpoint provided by Resource Catalog as other microservices
and client applications use it to search for available city resources. One can combine
multiple query parameters to filter the results, which includes:

• capability - search for resources with the specified capability

• lat - search for resources whose location has the specified latitude

• lon - search for resources whose location has the specified longitude
21http://playground.interscity.org

http://playground.interscity.org

3.4 | MICROSERVICES

43

• radius - search for resources near to the point defined by lat and lon parameters
considering the radius distance in meters from that point

• description - search for resources with the specified description

• status - search for resources based on their status (i.e., active)

• country - search for resources located at the informed country

• state - search for resources located at the informed state

• city - search for resources located at the informed city

• neighborhood - search for resources located at the informed neighborhood

The search responds a paginated list of up to 50 resources as shown by Figure 3.11.
Clients may use the page parameter to set which page the endpoint will return.

3.4.3 Data Collector
Data Collector is a key microservice of the InterSCity platform. It is responsible for

managing the resources’ context data provided through sensor capabilities. Therefore,
this microservice stores all context data published on RabbitMQ in a MonboDB
database since these data have a dynamic structure as previously mentioned. However,
we cache the latest context data of all resources in an in-memory MongoDB instance
to avoid performing complex queries in a large amount of historical data.

To enable other microservices and client applications to access both the latest and
historical context data of city resources, Data Collector offer a set of endpoints. It is
worth noticing that all endpoints offers a rich set of combinable filters. Consequently,
one may use both GET and POST HTTP verbs for each endpoint. The former exists
for requests with fewer and simpler query parameters. The later enables more complex
combinations of filters as it accepts a JSON body with the set of filters. Bellow are
the four endpoints of Data Collector:

• [GET, POST] /collector/resources/data - Get historical context data of
several city resources

• [GET, POST] /collector/resources/{uuid}/data - Get historical context
data of a specific city resource

• [GET, POST] /collector/resources/data/last - Get the latest context data
of several city resources

• [GET, POST] /collector/resources/{uuid}/data/last - Get the latest
context data of a specific resource

The available filters for the above endpoints are the following:

• capabilities - the search will only include context data records that belongs
to one of the capabilities defined in this parameter, which must be an array of
strings.

44

3 | THE INTERSCITY PLATFORM

1 {
2 "resources": [
3 {
4 "capabilities": [
5 "semaphore"
6],
7 "uuid": "f43d42ab -58ea -4eff -9c24 -2 e3c52103f00",
8 "description": "A traffic semaphore",
9 "status": "active",
10 "lat": -23.559616 ,
11 "lon": -46.731386 ,
12 "country": "Brazil",
13 "state": "Sao Paulo",
14 "city": "Sao Paulo",
15 "neighborhood": "Butanta",
16 "created_at": "2017 -08 -08 T17 :44:26.728Z",
17 "updated_at": "2017 -08 -08 T17 :44:26.728Z",
18 },
19 {
20 "capabilities": [
21 "temperature",
22 "environment_monitoring"
23],
24 "uuid": "45b7d363 -86fd -4f81 -8681 -663140 b318d4",
25 "description": "A traffic semaphore",
26 "status": "active",
27 "lat": -23.559616 ,
28 "lon": -46.731386 ,
29 "country": "Brazil",
30 "state": "Sao Paulo",
31 "city": "Sao Paulo",
32 "neighborhood": "Butanta",
33 "created_at": "2017 -08 -08 T17 :44:26.728Z",
34 "updated_at": "2017 -08 -08 T17 :44:26.728Z",
35 }
36]
37 }

Figure 3.11: Example Response of the Search Endpoint.

3.4 | MICROSERVICES

45

• start_date - the lower limit of date/time considered for selecting context data,
ignoring older records. The value for this parameter must comply with ISO 8601
(ISO, 1988).

• end_date - the upper limit of date/time considered for selecting context data,
ignoring newer records. The value for this parameter must comply with ISO
8601 (ISO, 1988).

• matchers of value - select context data based on match rules for specific
attributes. The following matchers are available:

– eq - specifies equality condition
– gt - select those data where the value of the specified attribute is greater

than the specified value
– gte - select those data where the value of the specified attribute is greater

than or equal to the specified value
– lt - select those data where the value of the specified attribute is less than

the specified value
– lte - select those data where the value of the specified attribute is less than

or equal to the specified value
– in - selects those data where the value of the specified attribute is in the

specified array
– ne - selects those data where the value of the specified attribute is not equal

to a specified value. This filter is usually combined with the capabilities to
avoid returning data that do not even have this attribute

• uuids - search for context data that belong to one of the resources specified in
this parameter. It must be an array of valid UUIDs and should only be used for
those endpoints that targets context data from several city resources.

Figure 3.12 is an example input json with parameters to the request POST
/collector/resources/data

3.4.4 Actuator Controller
Client applications may send commands to change the state of city resources

through their actuation capabilities. In this sense, the Actuator Controller microservice
receives and validates all actuation requests from clients. Actuator Controller publishes
valid commands in RabbitMQ to enable InterSCity’s background workers to notify
subscribers. Also, it stores all actuation requests and their respective status in a
MongoDB database for audit purposes and to allow clients to monitor their requests
through its API. Actuation commands may have one of the following statuses:

• pending - the command was received by the platform, but not by the target
resource yet

• failed - the command could not be sended to the target resource

46

3 | THE INTERSCITY PLATFORM

1 {
2 "uuids": [
3 "5ad20589 -a3db -4521-b1bc -a21dde00a25c",
4 "b5d170b5 -aaf3 -42bc -9e47 -58 e3fe2a4846"
5],
6 "capabilities": [
7 "environment_monitoring",
8],
9 "matchers": {
10 "temperature.gte": 13.498 ,
11 "temperature.lte": 18.091 ,
12 "humidity.eq": 20.02
13 },
14 "start_range": "2016 -06 -25 T12 :21:29",
15 "end_range": "2016 -06 -25 T16 :21:29"
16 }

Figure 3.12: Example Input JSON with Parameters to Filter Context Data.

• processed - the command was processed by the target resource

• rejected - the command was rejected by the target resource, probrably because
it does not konw how to process the input

Actuator Controller provides two endpoints:
• POST /actuator/commands - Client applications may use this endpoint

to send commands to underlying city resources. This API allows one to send
multiple commands at once rather than perform several requests to change
multiple resources, as Figure 3.13. Whenever a client application requests a
command, the command status is pending. As a result, the response of this
endpoint is divided into success commands (which passed in all validations) and
failed commands (with validation or input issues), as presented in Figure 3.14.

• GET /actuator/commands - This endpoint returns the list of actuation
commands requested by client applications for resources with actuation
capabilities. It is also possible to filter the results by status, by uuid of the target
resource, and by the actuation capability.

3.4.5 Resource Discovery
Resource Discovery is another fundamental InterSCity microservice, as it enables

client applications to discover the city resources based on several filters. Usually,
an application will first discover the available city resources and their UUIDs to
later interact with the other services. To this end, Resource Discovery offers a unique
endpoint that allows client applications to combine a set of filters regarding resources’
contexts.

One may combine static and dynamic filters to discover existing resources through
query parameters such resources geoghraphical location and its current state based
on the latest context values available on the platform. For example:

3.4 | MICROSERVICES

47

1 {
2 "data": [
3 {
4 "uuid": "b0ae6f76 -521d-4199 -9595 - f52c99361052",
5 "capabilities": {
6 "illuminate": {
7 "intensity": "high",
8 "status": "on"
9 }

10 }
11 },
12 {
13 "uuid": "0dbdae10 -4156 -4433 -9291 -5 d261eb0d8eb",
14 "capabilities": {
15 "illuminate": null
16 }
17 }
18]
19 }

Figure 3.13: Example Input JSON for Request Actuation Commands.

1 {
2 "success": [
3 {
4 "subscription": {
5 "id": {
6 "$oid": "598 a183c913ccd0001a8cb65"
7 },
8 "capability": "illuminate",
9 "created_at": "2018 -03 -22 T20 :33:49.584Z",

10 "updated_at": "2018 -03 -22 T20 :33:49.585Z",
11 "uuid": "b0ae6f76 -521d-4199 -9595 - f52c99361052",
12 "command": {
13 "intensity": "high",
14 "status": "on"
15 },
16 "status": "pending"
17 }
18 }
19],
20 "failure": [
21 {
22 "error": "Invalid command [\" Value can't be blank \"]",
23 "value": null ,
24 "capability": "illuminate",
25 "uuid": "0dbdae10 -4156 -4433 -9291 -5 d261eb0d8eb",
26 "code": 400
27 }
28]
29 }

Figure 3.14: Example Response for Request Actuation Commands.

48

3 | THE INTERSCITY PLATFORM

• GET /discovery/resources?capability=environment_monitoring
&temperature.gte=18&temperature.lte=30 - Search for resources with
the capability of environment monitoring and whose latest temperature readings
was between 18 and 30 degrees Celcius

• GET /discovery/resources?lat=-23.543750&lon=-46.638736&radius=500
- Search for resources near to the São Paulo’s Galeria do Rock location,
considering a radius of 500 meters

Similarly to the search endpoint of Resource Catalog, the Resource Discovery will
return a JSON with the representation of the resources that matched to the client’s
query.

3.5 Implementation Principles
With pragmatic documentary purpose for future contributions to the InterSCity

source code, in this section we enumerate the main implementation principles adopted
during the development of the platform. Unlike the listed design principles which
aims at addressing general system aspects at a higher level, implementation principles
bring a guideline to maintain or improve the code quality.

• Automated Testing. Each new feature must be supported by corresponding
automated tests to ensure its correctness and support changes. Such principle is
fundamental for the evolvability of the platform and must be applied whenever
possible, from small methods to more complex features.

• Database Indexing. Database indexing is critical for performance of queries.
Thus, it is extremely important for the system scalability and performance to
provide proper database indexes for implemented queries. Both MongoDB and
PostgreSQL provide indexing strategies.

• Data Pre-fetching. Avoiding unneeded database access is important to improve
the overall code performance. In this sense, it is always worthwhile to retrieve
the data that will be used in a feature or algorithm using as few queries as
possible. When the code needs to load the children of a parent-child relationship,
is quite normal to introduce the N+1 problem22 due to the lazy evaluation
of most database access frameworks, such as the ones provided by the Rails
community.

• Single Responsibility. Every software module must have at most one reason for
changing and to be maintained. At the lowest level, this means that methods and
classes should be cohesive and have a single responsibility. Similarly, InterSCity
microservices should also implement a small set of functionalities related to a
single responsibility in a cohesive manner.

22https://www.sitepoint.com/silver-bullet-n1-problem/

3.6 | APPLICATION LIFE-CYCLE

49

• Code as Documentation. Even if there are good descriptions and diagrams
documenting the system, in the end, for developers, the main form of
documentation is the source code itself. Thus, it is quite important to keep the
code as clean as possible to enable other developers to browse through the code
and read it easily. It is also important to keep the code simple.

• Code Review. Following open source communities’ practices, InterSCity’s
repositories should have a set of core commiters with writing access. External
contributions must be done through Merge Requests, which should be reviewed
and merged by a experienced commiter.

• Put Everything Under Version Control. All elements that comprise
InterSCity, including code, documentation, tools, scripts, and tests, should
be under version control. Currently, we rely on GIT. This is critical to enable
collaborative work and to keep the open source community active.

3.6 Application Life-cycle
To demonstrate the InterSCity approach, here we illustrate how applications can

be built over the InterSCity services to interact with city resources. For this purpose,
we exemplify the use case of four experimental smart city application developed on
top of the platform. External contributors developed these applications and as such,
are credited as indirect technical contributions of this masters research.

The first example is a Smart Parking app developed by University of São Paulo
(USP) undergraduate and graduate students during a programming course in 2016
which aims at supporting drivers to easier find available parking spots in the city. The
second application is the São Paulo Health Dashboard, a management system that
provides useful visualization tools to support the analysis of a large amount of medical
procedures data. This application was initially developed as an ad-hoc solution during
a summer course on Smart Cities at USP, being later migrated to run on the top of
the InterSCity. Currently, it has been maintained by a student of scientific initiation
as part of the InterSCity consortium.

Finally, the last two solutions were developed during the USP Hackathon on Smart
Cities held at IME/USP in 2017 which used the online instance of the InterSCity
platform. The first is a full-stack project called SancaLights that aims at providing
low-cost sensors and a management system for public light monitoring. The second is
Twitter bot that provides recommendations in real time about everyday life at São
Paulo.

3.6.1 Smart Parking App
The Smart Parking application aims to help the difficult task of finding available

parking spots in a large city, by offering a map with geolocated real-time information
of parking spaces. The system is based on both static and sensor data of individual
parking spots equipped with embedded sensors to notify the presence of a parked
car. As can be seen in Figure 3.15, the Smart Parking App allows drivers to discover

50

3 | THE INTERSCITY PLATFORM

close parking spaces by offering visualization filters related to their availability, prices,
and operating hours. One can check the details of a parking spot and view the route
from the user’s current location, as shown in Figure 3.16. The hardware part of this
example was simulated via a specific software component that mimicked the behavior
of physical sensors. The source code is available in the platform distribution23.

Figure 3.15: Screenshot of the Smart Parking application.

Figure 3.16: Parking spot details in the Smart Parking application.

Figure 3.17 illustrates a message flow that resulted from the use of the Smart
Parking application supported by the InterSCity platform hosted on a cloud
infrastructure. This example considers a smart parking infrastructure supported
by cyber-physical systems to detect the presence of cars in parking spaces based on
technologies that are commonly used in smart parking solutions, such as Wireless
Sensor Networks (WSN), Light Dependable Resistor (LDR) sensors, Infra-Red (IR)

23www.gitlab.com/smart-city-platform/smart_parking_maps

3.6 | APPLICATION LIFE-CYCLE

51

sensors, and magnetic sensors (Bachani et al., 2016). These sensors send data
continuously to a remote IoT Gateway via wireless protocols, such as ZigBee or
Bluetooth, as illustrated in Step 1. The responsibilities of the IoT Gateway are
two-fold: (I) registering each connected parking spot as a city resource with the
“availability” sensor capability (Step 2) and (II) notifying the platform when a parking
space becomes available or unavailable (Step 3). For these purposes, the IoT Gateway
must track resource UUIDs provided by InterSCity to be able to send context data
through the Resource Adaptor API upon state change events. We highlight that the
concepts of city resource and capability abstract the implementation details of the
underlying WSN infrastructure.

To use The Smart Parking application, one must define a target location or
automatically use his/her current GPS data in addition to setting custom parameters
to filter parking spaces according to the desired characteristics (Step 4). As an example,
the application may query the platform for all the parking space resources that match
the selected parameters within a 500 meters radius of the target location through
the Resource Discovery API (Step 5). As a result, the Smart Parking application
renders the current state of the returned parking resources on the map, as shown
in Figure 3.15. Users can set the update time interval to get the current state of
the returned resources as well as to modify the parameters, which will result in new
requests such as the one performed in Step 5. Additional requests may be performed
to get detailed information about a specific parking spot from the Resource Catalog
API, such as presented in Figure 3.16, or even to obtain its availability history through
the Data Collector microservice (Step 6).

Acknowledgements

We acknowledge the student members of the Smart Parking App group who
developed the application on top of the InterSCity platform: Debora Setton, Hans ´
Harley, Jefferson Silva, Nury Arosquipa, and Thiago Petrone.

3.6.2 São Paulo Health Dashboard
The São Paulo Health Dashboard24 was developed during a summer course by

graduate students as an ad-hoc solution to provide visualization mechanisms for
medical procedures data from São Paulo health systems. Later, this project was
migrated to run on the top of the InterSCity platform for two major reasons: (I)
make its data available so that other applications could reuse them; (II) decrease the
backend size of the application by reusing InterSCity facilities. Currently, this project
has been evolved within the InterSCity consortium together with members of the
city’s health department and its source code is available online25.

Figure 3.19 shows the main page of the São Paulo Health Dashboard. The
application uses medical procedures data from Sistema Único de Saúde (SUS) of
São Paulo city, which include location and specialties of health facilities as well as
anonymised data of patients, such as census sector, genre, and age. Among other

24http://healthdashboard.interscity.org/
25https://gitlab.com/eduardopinheiro482/health-smart-city

http://healthdashboard.interscity.org/
https://gitlab.com/eduardopinheiro482/health-smart-city

52

3 | THE INTERSCITY PLATFORM

Figure 3.17: Smart Parking application life cycle.

features, the system provides: a map that evidences the distance that patients must
travel to perform certain medical procedures; categorization of medical procedures;
graphs for better visualization and understanding of data; advanced filters.

Although the available health data come from records of health services instead of
coming from cyber-physical systems, the InterSCity abstractions are flexible enough
to properly integrate them. Therefore, we modeled each health facility of the city as a
resource with a single capability (medical_procedure), while each medical procedure
perfomed in a given health facility is a context data of this capability. Figure 3.19
presents the entire lifecycle of running the Health Dashboard on the top of the
InterSCity platform. We only have access to historical data that is made available
through static files annually. Consequently, we had to create a script to parse those
files (Step 1) and behaves like an IoT Gateway, registering the resources (Step 2) and
the medical procedures data (Step 3) according to our model. Currently, the Health
Dashboard App uses the InterSCity to discover all health facilities of the city (Step 4)
and to collect the whole historical data of their medical procedures (Step 5).

3.6 | APPLICATION LIFE-CYCLE

53

Figure 3.18: Screenshot of the São Paulo Health Dashboard.

Acknowledgements

We acknowledge the student members of the São Paulo Health Dashboard group
who developed the application on top of the InterSCity platform: Eduardo Pinheiro,
Debora Lina, Lucas Moura, Macartur Sousa, Lucas Kanashiro, and Rosangela Pereira.

3.6.3 SancaLights
SancaLights26 is the winner project of the 2017 USP Hackathon on Smart Cities

and it used the InterSCity as backend middleware. This project aimed at providing a
full-stack solution for monitoring the public lighting in real-time. The project members
advocate that through the use of low-cost sensors to read the electricity consumption
of each public lamppost in real time, the CIP tax (contribution to the cost of public
lighting services) will be calculated more fairly, generating cheaper electricity bills for
the entire population. Currently, the government calculates the CIP using estimates
which assumes all lampposts are lit for a certain period. Such estimates neither
considers problems with broken lampposts nor contemplate the difference of the
quality of illumination in different districts of the city. Improving the maintainance
process of lampposts is another key advantage of this application since city managers
can identify the exact location of faulty lampposts in real time.

To implement the SancaLights, the project members built their own hardware
prototype using a Raspbarry PI microcontroller with a sensor to measure the eletric
current of the lamppost. Also, the group developed its own IoT Gateway to handle the
sensor readings and post these data periodically on the InterSCity platform. Finally,
the group developed a Web Application based on the InterSCity APIs to show the
status of city lampposts in real time, as shown in Figure 3.20.

26https://jornal.usp.br/universidade/alunos-da-usp-criam-hardware-que-pode-diminuir-valor-da-conta-de-luz

https://jornal.usp.br/universidade/alunos-da-usp-criam-hardware-que-pode-diminuir-valor-da-conta-de-luz

54

3 | THE INTERSCITY PLATFORM

Figure 3.19: São Paulo Health Dashboard application lifecycle.

Acknowledgements

We acknowledge the student members of the SancaLights group who developed
the application on top of the InterSCity platform: André Perez, Daniel Fernandes,
Guilherme Rocha, and Leonardo Parente

3.6.4 Recomenda SP
Another notable project created during the 2017 USP Hackathon on Smart Cities

is the Recomenda SP27. This project collected data from multiple city resources
periodically from the InterSCity platform to produce useful recommendations about
the everyday life in the city of São Paulo through a Twitter bot called SPoiler28.
Citizens with a Twitter account can follow hashtags of interest to filter the SPoiler
recommendations, as shown in Figure 3.21.

27https://devpost.com/software/recomenda-_sp
28https://twitter.com/recomenda_sp

https://devpost.com/software/recomenda-_sp
https://twitter.com/recomenda_sp

3.6 | APPLICATION LIFE-CYCLE

55

Figure 3.20: Screenshot of the SancaLights project.

To produce the recommendations, the Recomenda SP used a Complex Event
Processing (CEP) engine to identify events to automatically produce alerts through
the SPoiler bot. In this sense, they used data from city environment monitoring sensors
(windspeed, temperature, humidity, atmospheric pressure, UV), data from shared bike
stations (BikeSampa), and data from other city resources.

Acknowledgements

We acknowledge the student members of the SancaLights group who developed the
application on top of the InterSCity platform: Vitor Silva, Italo Alberto, and Victor
Harano.

56

3 | THE INTERSCITY PLATFORM

Figure 3.21: Screenshot of the SPoiler Twitter bot.

57

Chapter 4

Scalability-seeking Experimental
Method

The primary design objective of the proposed architecture of the InterSCity
platform is to meet scalability. From the first implemented versions of InterSCity
to the current architecture presented in Chapter 3, several evolutions have been
incorporated to the project, ranging from solving specific implementation problems
to redesigning certain elements. In this sense, during this master’s research, we have
introduced the Scalability-seeking Experimental Method in our development life-cycle,
an iterative method based on performance testing with the objective of continuously
improving the proposed solution and identifying possible bottlenecks to solve them
beforehand.

Therefore, in this chapter, we present the above method and navigate through the
main improvements that were implemented from its application. As a result, based on
our experience, we deepen the discussion on the impact of microservices architecture
in the system evolvability.

Our approach is shown in Figure 4.1, which illustrates our Scalability-seeking
Experimental Method. The method aims at providing an iterative set of pragmatic
steps to guide the development and evaluation of the platform to meet performance and
scalability requirements. Firstly, we must have a fully functional version of the platform;
then we run performance tests or a lightweight experiment to evidence a possible
bottleneck, which is identified through an analysis of the usage of computational
resources and performance metrics. From this point, the possibilities are twofold.
If a bottleneck is identified, we move back to the design & development phase to
address it, completing a cycle of improvement. Otherwise, we run a comprehensive
set of scalability experiments to evaluate the platform concerning performance and
scalability. It is worth noting that running experiments to find bottlenecks and improve
the system design does not require such high scientific rigor (i.e., repeated executions
of the same experiment), as the objective of these performance test is to identify
existing problems as faster as possible. In turn, for more conclusive results on the
performance and scalability properties of a stable version of the system, we must run
repeated experiments and perform a more careful analysis.

Both stages that depend on experiments, the early lightweight experiments to
identify bottleneck and the comprehensive experiments to enable more sophisticated

58

4 | SCALABILITY-SEEKING EXPERIMENTAL METHOD

Figure 4.1: Scalability-seeking Experimental Method

scalability analyzes, aims at understating how variations of the workload and aspects
of the system impacts on the platform performance and scalability. Therefore, it is
important to define some elements to enable a correct analysis: the objective of the
experiment; how to generate a significant workload for the system; the techniques
and metrics that will be used; which are the parameters that will change during the
execution of the experiment and which will not. However, these aspects are more
stringent for running comprehensive experiments since they demand higher scientific
rigor.

In spite of the fact that the described method is based on scientific techniques,
several of its steps are empirical, such as identifying bottlenecks and making technical
improvements. Moreover, although the method could be used in other contexts, we
only present them as a pragmatic process to guide us towards achieving scalability
in the InterSCity project. In this sense, we neither formally define the method nor
apply scientific rigor to all its stages since many results of its application are merely
technical.

During this master’s research, we were able to run two complete rounds of the
Scalability-seeking experimental method, within which we have made several cycles
of improvements. We noticed that many scalability and performance issues are not
identifiable in common tests at implementation time while identifying and addressing
them at the end of the development life-cycle could be more complicated and costly. In
this chapter, we focus on the empirical aspects of developing the InterSCity platform
by presenting the results of some improvement cycles. In turns, Chapter 5 focuses
on discussing the scientific validations by presenting results of the comprehensive
experiments we ran at the end of two complete cycles.

4.1 Improvement Cycles of the First Round
During the first complete round, we conducted three improvement cycles, which

supported us in making important architectural changes. In each of these cycles, we
ran experiments to evaluate how the performance of the InterSCity platform degrades

4.1 | IMPROVEMENT CYCLES OF THE FIRST ROUND

59

with the increase of concurrent IoT gateways (underlying client layer) sending sensor
data continuously over an extended period. The main objective of these experiments
are to evaluate the individual behavior and consumption of hardware resources of
each microservice so that we could identify potential bottlenecks.

In summary, for each experiment, we ran an instance of the InterSCity platform in
the Digital Ocean1, a public cloud provider. We used several single-core GNU/Linux
Debian 8.6 machines with 512MB RAM having 2.0GHz of clock speed in the same
private network hosting one single containerized instance of a service, such as the
Resource Adaptor, Resource Catalog, Data Collector, and RabbitMQ services, without
any replication. We performed the degradation analysis by benchmarking the platform
against different workloads supported by the Funkload2 load testing tool in all the
three cycles. Workloads were characterized by the number of concurrent emulated
IoT Gateways that continuously send sensor data from city resources to the platform.
Each client (the IoT Gateways) runs a loop sending synchronous requests to the
platform throughout the experiment as fast as it can. We ran each of the load tests for
four minutes, with a 30-second interval between them, collecting both response time
and throughput metrics, while keeping the same capacity and configuration of the
platform during all workload tests. We repeated each run of the experiment 20 times.

Figure 4.2a shows the results of the first improvement cycle regarding the
performance degradation of the platform as the number of concurrent IoT Gateways
increases. It can be seen that the response time increased significantly with increasing
workload. The average response time was already longer than 1 second with 200
concurrent customers, reaching 3.6 seconds with 500. This high latency happened due
to some characteristics of the tested InterSCity version, represented by Figure 4.3.
In this version, whenever a new city resource was registered in the platform, the
Resource Adaptor provided a new endpoint (URL) to enable other services to request
for the most recent data or send actuator commands. Thus, every time a client sent a
sensor data, the Resource Adaptor recorded this data in its local database and provided
an API so that the Data Collector could retrieve the data later by polling HTTP
requests each second. The requests made by the clients and the polling mechanism
required redundant and costly I/O operations, turning the Resource Adaptor into the
bottleneck.

To improve the performance of the platform, we started a new cycle of the method
by returning to the design & development stage. The major modification was that
we changed the Resource Adaptor to save the data posted by a resource to memory
instead of using a disk-based database. In this way, we have been able to reduce the
latency of client requests and to consume less resource when Data Collector polled the
Resource Adaptor for new data, as demonstrated in Figure 4.2b

Despite the improvements in results, this design would not scale to support a
large number of IoT gateways sending data in parallel to the platform. Moreover,
by monitoring the microservices, we noticed that both the Resource Adaptor and
the Data Collector services were becoming bottlenecks. The former consumed a lot
of memory and CPU due to a large number of requests and the latter due to the
continuously thread-based work to poll the Resource Adaptor for the increased number

1https://www.digitalocean.com
2http://funkload.nuxeo.org

https://www.digitalocean.com
http://funkload.nuxeo.org

60

4 | SCALABILITY-SEEKING EXPERIMENTAL METHOD

(a) First improvement cycle - Response time degradation.

(b) Second improvement cycle - Response time degradation.

(c) Third improvement cycle - Response time degradation.

Figure 4.2: Improvement Cycles of the First Round of the Scalability-seeking Experimental
Method

4.1 | IMPROVEMENT CYCLES OF THE FIRST ROUND

61

Figure 4.3: First improvement cycle - InterSCity design.

of city resources.
Therefore, we started the third cycle of development and experimentation that

has led to the first stable architecture of the platform, presented at the beginning of
this chapter. Among other modifications, we highlight three major improvements: (I)
the prioritization of asynchronous calls over HTTP request-response method; (II) the
substitution of the polling mechanism by the event-oriented approach and background
workers; and (III) the removal of states related to the city resources from the Resource
Adaptor. Consequently, we have reduced the coupling between services and improved
the cohesion of the Resource Adaptor, which now has the single responsibility of
providing an API for integrating IoT resources with other platform services.

Figure 4.2c shows the performance degradation of the platform as the number
of concurrent IoT Gateways increases. The best average response time occurs for a
workload of 50 concurrent clients, which was less than 60 milliseconds.

The average response time remained below 1 second with a workload of up to 400
parallel clients. However, the tests with 250 or more clients in parallel start to have
requests with the latency above 1 second; for this particular application, this is not a
problem, but this is an interesting indication of the limitations of the platform in case
of applications with more stringent real-time requirements. It is important to note
that the number of failed requests (returned with an error code or with a timeout)
varied from 0.01% for 350 concurrent clients to 0.16% for 600 concurrent clients. With
up to 250 concurrent IoT Gateways, 100% of the requests were successful.

In addition to evaluating the degradation in the overall performance, we also
monitored the use of hardware resources on each machine to identify potential
bottlenecks. For this purpose, we used the Linux-based Collectl3 tool, as it can
be used to monitor a broad set of subsystems such as CPU, disk, memory, processes,
and network. Among the four machines used to deploy the platform in the experiment,
the one that hosted the Resource Adaptor microservice presented the highest load

3collectl.sourceforge.net

62

4 | SCALABILITY-SEEKING EXPERIMENTAL METHOD

in CPU and memory usage, both close to 100% during the entire duration of the
experiment, being identified as the main bottleneck of the first stable version of
the platform considering the tested scenario. The Data Collector host machine also
maintained a high level of CPU usage, as well as intensive use of I/O operations to
store the sensed data. The other two machines did not characterize bottlenecks.

After three improvement cycles, we achieved the first stable version of the InterSCity
platform on which we performed the remaining steps of the scalability-seeking
experimental method through controlled scalability experiments. However, the results
of these experiments will only be shown in Section 5.1

4.2 Improvement Cycles of the Second Round
After achieving a stable version of the InterSCity platform, we continued our

development process by adding new features and refactoring the existing infrastructure.
In this way, we were able to run another complete round of scalability-seeking
experimental method to evaluate the impact of our changes on the system overall
performance.

During the second round, we conducted four improvement cycles. However, we
changed the experimental setup and objectives to assess the platform performance
considering a more realistic workload and covering a larger set of functionalities.
To generate the workload to assess the platform scalability, we integrated the
InterSCity platform with the InterSCSimulator, a scalable smart city simula-
tor (santanainterscsimulator). We implemented a Smart Parking scenario in the
InterSCSimulator in which drivers could use the Smart Parking App (explained in
Secion 3.6.1) to discover available parking spots in São Paulo city. Each driver actor
works as a client for the platform as they perform a set of requests to it to obtain
the nearest available parking spots. Similarly, the parking spots are city resources
registered to the platform, being responsible for notifying the platform whenever it
becomes available or unavailable. By using the simulator, we could produce a more
appropriate workload to the platform since the simulator is capable of managing
the behavior of both the IoT infrastructure and the client applications at the same
time while considering the consequences of their interactions during the simulation in
contrast to the previous approach based on simpler benchmarking tools.

In summary, in each improvement cycle performed the following steps: (I) running
a production-like instance of the platform in a cloud environment; (II) enabling an
auto-scaling mechanism for the platform’s microservices based on the variation of the
workload; (III) setting up the simulator in an isolated environment; (IV) starting the
simulation of the Smart Parking scenario; (V) monitoring the platform’s performance
and its usage of the computational resources during the entire simulation; and
(VI) analyzing the obtained results.

By using the early described scalability-experimental method, we were able to
considerably improve the platform design from a scalability and performance point of
view. Figure 4.4 presents the sequence of four improvement cycles during the second
round of the proposed method.

Using a functional version of the InterSCity platform, which contains a series of
modifications relative to the stable version obtained in the first round of the scalability-

4.2 | IMPROVEMENT CYCLES OF THE SECOND ROUND

63

(a) Index improvements on MongoDB

(b) Using in-memory MongoDB on Data Collector

(c) Removing serialization overhead

Figure 4.4: Improvement Cycles of the Second Round of the Scalability-seeking Experimental
Method

64

4 | SCALABILITY-SEEKING EXPERIMENTAL METHOD

seeking experimental method, we executed the first improvement cycle. This first
cycle evidenced very poor performance, with response times in excess of two minutes.
By monitoring the use of computational resources, we observed an unexpectedly high
CPU usage by MongoDB, indicating that it was using poor indexing strategies. This
was identified as a possible bottleneck, so we went back to design & development
phase. After monitoring the queries submitted by the Data Collector to MongoDB, we
were able to improve our database indexes.

The second cycle of the experiment (Figure 4.4 (a)), showed considerable
improvement in response times compared to the first cycle (Figure 4.4 (b)). However,
the mean response time remained unsatisfactory, with some of them reaching close
to 6 seconds. Such latency of responses is poor for smart parking applications, as
it can result in traffic generation and longer driver unseating. By monitoring the
computational resources used by each service, we notice that the Data Collector became
the main bottleneck. After examining the logs of this second experiment, we learned
that the database lock was delaying the responses to the queries on Data Collector. This
happened due to multiple concurrent writes of the data generated by the simulated
IoT infrastructure when the state of parking spots changed. We solved this new
bottleneck by caching the latest data samples received from the IoT infrastructure
in an in-memory MongoDB instance. After that, read queries were able to access
recent data in memory so that the multiple concurrent writes to the MongoDB in-disk
instance no longer affected their performance.

Such design enhancements led to performance improvements, with response times
as shown in Figure 4.4 (b). In this version, we observed that some queries that were
performed during microservices communication were returning a considerable amount
of unnecessary data. As a consequence, a considerable latency was added to serialize,
send and then deserialize the data. More precisely, replies of the requests performed
by the Resource Discovery microservice to the Data Collector only required the list of
UUIDs of the matched IoT resources. However, the previous version was serializing all
the data returned by MongoDB into Ruby objects (including all metadata) before
transforming them into JSON responses. Therefore, we changed the strategy to avoid
unnecessary serialization steps to reduce CPU usage on an increasing load, especially
when mapping database query responses into Ruby objects.

After several cycles of improvement, we came up with the latest version of the
InterSCity platform, which shows a noticeable improvement in performance and
scalability compared to the version we had before the adoption of the method. This
can be seen from the response times shown in Figure 4.4 (c). Consequently, as the
next chapter presents, we were able to perform the second complete iteration of our
method to produce a more conclusive and comprehensive analysis of the scalability
and performance of InterSCity.

65

Chapter 5

Scalability Evaluation

We designed a series of extensive experiments to evaluate the scalability properties
of the proposed platform. During this master’s research, we performed two sets of
experiments, which are detailed later in separate sections.

In the earlier stages of this research, we carried out experiments to evaluate the first
stable version implemented of the InterSCity platform, which is the result from the
application of the first round of scalability-seeking experimental method, as explained
in Chapter 4. These experiments aimed at evaluating the behavior of the platform in
handling data streams from multiple sensors in terms of performance degradation and
the improvement of performance in the addition of more computational resources.

In the second set of experiments, we evaluated the latest stable version implemented
during this research in the final of the second round of the scalability-seeking
experimental method. In comparison to the early experiment, these experiments
are quite more comprehensives since they are based on a more realistic smart city
scenario, with a varying workload, and considering both client applications and
underlying IoT gateways interacting with the platform. In these experiments, we
deployed the InterSCity in a cloud infrastructure and used DevOps tools to enable
the auto-scaling of its microservices to properly support the varying demand.

5.1 Evaluating the Preliminary InterSCity Ver-
sion

This first set of experiments is composed of two preliminary experiments. First, we
evaluated how the performance of the InterSCity platform degrades with the increase
of concurrent IoT gateways (clients) sending sensor data continuously over a long
period of time. The main objective of these experiments is to evaluate the individual
behavior and consumption of hardware resources of each microservice so that we could
identify potential bottlenecks. The second experiment aim at assessing the scalability
of the platform by applying supported scalability strategies to the bottlenecks we
identified.

To conduct the experiments, we ran a production-like instance of the InterSCity
platform in the Digital Ocean1 cloud. Both InterSCity microservices and external

1https://www.digitalocean.com

66

5 | SCALABILITY EVALUATION

services, such as PostgreSQL, RabbitMQ, and Redis, were deployed within Docker
containers. However, each service instance was hosted on its virtual machine for
isolation purposes, guaranteeing a fixed amount of machine resources per service.
In the experiments, we consider a common smart city scenario where distributed
sensors continuously collect observations from the city and send the sensed data to
IoT gateways. The scripts used in the experiment are available in the repository for
reproducibility 2.

5.1.1 Degradation Analysis
For the first experiment, we used several single-core GNU/Linux Debian 8.6

machines with 512MB RAM having 2.0GHz of clock speed in the same private
network hosting one single instance of a service, such as the Resource Adaptor, Resource
Catalog, Data Collector, and RabbitMQ services, without any replication. We performed
the degradation analysis by benchmarking the platform against different workloads
supported by the Funkload3 load testing tool in all the three cycles. Workloads were
characterized by the number of concurrent emulated IoT Gateways that continuously
send sensor data from city resources to the platform. Each client (the IoT Gateways)
runs a loop sending synchronous requests to the platform throughout the experiment
as fast as it can. We ran each of the load tests for four minutes, with a 30-second
interval between them, collecting both response time and throughput metrics, while
keeping the same capacity and configuration of the platform during all workload tests.
We repeated each run of the experiment 20 times.

Figure 5.1 shows the performance degradation of the platform as the number
of concurrent IoT Gateways increases. The best average response time occurs for a
workload of 50 concurrent clients, which was less than 60 milliseconds.

The average response time remained below 1 second with a workload of up to 350
parallel clients. However, the tests with 250 or more clients in parallel start to have
requests with the latency above 1 second; for this particular application, this is not a
problem, but this is an interesting indication of the limitations of the platform in case
of applications with more stringent real-time requirements. It is important to note
that the number of failed requests (returned with an error code or with a timeout)
varied from 0.01% for 350 concurrent clients to 0.16% for 600 concurrent clients. With
up to 250 concurrent IoT Gateways, 100% of the requests were successful.

In addition to evaluating the degradation in the overall performance, we also
monitored the use of hardware resources on each machine to identify potential
bottlenecks. For this purpose, we used the Linux-based Collectl4 tool, as it can
be used to monitor a broad set of subsystems such as CPU, disk, memory, processes,
and network. Among the four machines used to deploy the platform in the experiment,
the one that hosted the Resource Adaptor microservice presented the highest load
in CPU and memory usage, both close to 100% during the entire duration of the
experiment, being identified as the first bottleneck in the tested scenario. The Data
Collector host machine also maintained a high level of CPU usage, as well as intensive

2www.github.com/LSS-USP/smart-city-platform-experiments
3funkload.nuxeo.org
4collectl.sourceforge.net

5.1 | EVALUATING THE PRELIMINARY INTERSCITY VERSION

67

Figure 5.1: Response time degradation.

use of I/O operations to store the sensed data. The other two machines did not
characterize bottlenecks.

5.1.2 Scalability Analysis
The objective of the second experiment on the preliminary version of InterSCity

was to evaluate the scalability of the platform, as well as to demonstrate the flexibility
of our architecture to address scalability issues. The same smart city scenario was
considered, with concurrent IoT gateways continuously sending sensor data from
city resources to the platform. For this experiment, we kept a fixed workload with
500 concurrent clients to evaluate the platform’s speedup and scale-up metrics. The
speedup metric measures how the performance improves with the addition of new
resources to the system, while the scale-up metric measures the throughput gain.

The loosely coupled microservices architecture allows us to increase only the
resources of the identified bottleneck microservices. We benchmarked the platform
with the fixed workload during six 4-minute cycles applying a round-robin load
balancing strategy by adding a replica of the Resource Adaptor microservice for
each new cycle. The first cycle used exactly the same deployment setup of the first
experiment described before. Both the Load Balancer (NGINX5) and the new Resource
Adaptor instances were deployed on Docker containers hosted by separate single core,
GNU/Linux Debian 8.6, 512MB RAM, 2.6GHz machines. These tests were performed
using the Apache Benchmark6 Linux tool.

As a result of the scaling strategy, the average response time decreased from
1725 milliseconds (with 1 instance) to 320 milliseconds (with 6 instances). Figure 5.2

5www.nginx.com
6httpd.apache.org/docs/2.4/programs/ab.html

68

5 | SCALABILITY EVALUATION

shows the performance improvement measured in the experiment. We can observe a
significant performance gain when scaling horizontally only one of the microservices
that make up the platform; the speedup is very close to optimal. Since all messages
received by Resource Adaptors are published through the RabbitMQ message service,
the use of CPU by this service increases considerably, indicating another possibility
for improving the speedup even a little more. RabbitMQ offers horizontal scalability
natively, and we plan to enhance the platform making use of this feature, further
improving its scalability.

Figure 5.2: Speedup - performance improvement varying the number of Resource
Adaptors.

As can be seen in Figure 5.3, the mean throughput of the platform increased
substantially by horizontally scaling the Resource Adaptor in the tested scenario. With
6 instances, the platform answered an average of 1546 requests per second, 5.5 times
more than when using the configuration with a single Resource Adaptor. Similarly to
the speedup metric, the scale-up value increases almost at the same rate at which new
instances are added, which is an excellent result.

5.1.3 Threats to Validity and Limitations
Although the above experiments point towards the applicability of our approach in

the context of smart cities by demonstrating that the platform can support different
scalability demands while keeping acceptable performance, they are preliminary since
they have a set of limitations.

Regarding scope, the experiments are limited to the interactions among underlying
IoT systems with the platform, disregarding the services provided to client applications.
Consequently, most of the features provided by our platform were not tested. Also, it
is not possible to analyze the impact of the multiple interactions from different actors
to the platform on the overall system performance. For instance, a large number of
writing operations could impact negatively on the performance of reading operations.

We only considered a simple scenario of concurrent clients sending sensor data to
the platform continuously. Such an approach is limited due to the lack of variation

5.2 | EVALUATING THE LATEST INTERSCITY VERSION

69

Figure 5.3: Throughput improvement varying the number of Resource Adaptors.

of data being transmitted, as well as their frequency. Also, due to our experimental
setup limitations, the number of concurrent clients and the computational resources
available for running the tested platform instance is immensely lower than what is
expected for a production environment in a real smart city. Future smart cities will
comprise a huge diversity of IoT devices which will produce a massive volume of data
in different formats with varying intervals. Also, smart cities will integrate non-sensor
devices, such as actuators. In this sense, to properly evaluate the InterSCity platform
it is required to consider more realistic smart city scenarios and to use appropriate
tools to generate significant workload to the platform.

5.2 Evaluating the Latest InterSCity Version
To evaluate the latest InterSCity’s stable version, we conducted a comprehensive

experiment to provide an extensive analysis of the platform’s scalability properties.
Such experiments resulted in the final validations of the proposed platform in the
context of this masters’ research. To properly validate the proposed platform, we have
addressed most of the limitations identified in our preliminary experiments.

However, demonstrating the actual scalability of the InterSCity platform presents
significant challenges due to the lack of available infrastructure for real experimental
setups, as well as the lack of comprehensive datasets. This state of affairs derives from
the difficulty in assessing platform characteristics in real-world scenarios.

One challenging related problem is the generation of representative workloads to
assess the performance and scalability of smart city software platforms. Two distinct
fundamental actors must be accounted for: (1) client applications, which generate
requests using the platform facilities, and (2) the underlying IoT devices, which
continuously produce sensed data and/or receive actuation commands. In this context,
the use of randomly generated datasets or a failure to consider either of these external
actors can result in experiments that do not represent realistic scenarios. In a real smart
city, citizens dynamically interact with the cyber-physical infrastructure, triggering

70

5 | SCALABILITY EVALUATION

multiple events and changing the context observed by pervasive devices and systems.
Similarly, platform clients, such as end-user applications and city management services,
may vary their interaction behavior with the platform due to events observed in the
physical world and real-time data provided by the city. This dynamic behavior of
citizens and platform clients needs to be captured and modeled to generate significant
and representative synthetic workloads.

Available benchmark tools focus on generating workloads for Smart Cities or IoT
platforms by extrapolating real sensor traces from various contexts or by emulating
the behavior of users based on Web traces. In this sense, the InterSCity research
community proposed the use of the InterSCSimulator to generate a large-scale workload
to platform evaluation based on realistic smart city scenarios (E. F. Z. Santana
et al., 2017). Although data produced by a simulator is still synthetic, it reflects the
individual behavior of involved actors and their interactions, emulating the dynamic
behavior of a city and adapting the simulation accordingly.

The InterSCSimulator is a smart city simulator for the behavior of city actors and
their interactions in large-scale settings. It implements models based on city actors,
such as citizens, IoT devices, vehicles, buildings, and roads. Previous work shows that
InterSCSimulator is capable of simulating an entire city such as São Paulo, with more
than 10 million software agents virtually moving across tens of thousands of streets.

The tasks we performed to enable the simulation-based experiments on the
InterSCity platform are twofold: (I) Integrate the simulator with the platform enabling
two-way communication among them; and (II) Design and implement the smart city
scenario on the simulator. The integration of the two systems is the focus of another
master’s research, and therefore we will not delve into its details here. The following
is the details of the scenario used in the evaluation of the InterSCIty platform.

5.2.1 Smart City Scenario
To evaluate the InterSCity platform, we implemented a Smart Parking scenario on

InterSCSimulator, which uses the existing mobility models in addition to new parking
spot actors. This scenario considers several car drivers using the Smart Parking mobile
application backed by the InterSCity platform to assist in the difficult task of finding a
free parking spot in a large city like São Paulo, such as the application we presented in
Section 3.6.1. This application offers geolocated real-time information about parking
spaces. When using the mobile app, the car sends its current location to the server
application, which then answers with a list of the closest available parking spots. In this
scenario, we simulated the behavior of drivers that use the mobile application, along
with the behavior of the IoT devices installed in parking spots and the interaction
between them.

We extended the simulator with models to support the monitoring of parking spots
and to allow drivers to find parking spots in the city. A parking spot actor generates
events when a car parks on it or leaves it. It simulates the behavior of a real smart
parking infrastructure supported by cyber-physical systems to detect the presence
of cars based on technologies that are commonly used in smart parking solutions,
such as Wireless Sensor Networks (WSN), Light Dependable Resistor (LDR) sensors,
Infra-Red (IR) sensors, and magnetic sensors.

5.2 | EVALUATING THE LATEST INTERSCITY VERSION

71

The simulation model consists of the following flow for a single car agent: (I) the
car starts its trip from an origin to a destination point; (II) when the car is close to
arriving at its destination, it requests the nearest free spots to the Smart Parking
application; (III) the application asks the platform to find the nearest available spots
considering the user’s location; (IV) with the data returned by the platform, the
simulator changes the route of the car to the closest parking spot returned; (V) the
driver arrives at the spot and finishes its trip; (VI) the simulator updates the status
of the chosen parking spot on the InterSCity platform, marking it as unavailable.

If the platform does not find any parking spots that match the request of a car
driver, the corresponding simulation agent may return to Step II increasing the search
radius. After three failed attempts, the agent stops using the application and completes
its execution in the simulation. Another special case might occur during Step V, as
the target parking spot might become unavailable (e.g., by being taken by another
vehicle), requiring the car to return to Step II.

The interactions between the InterSCSimulator and the InterSCity platform
required the integration of these two systems. Such interactions impose workloads on
the platform at the top layer, as the simulator consumes data as a client application,
and at the bottom layer, as it updates the status of the underlying IoT infrastructure
of smart parking spaces.

To generate a significant workload to evaluate the platform, we modeled a realistic
scenario based on real data from the huge city of São Paulo. This data was used as
input to the simulator to define the number and distribution of parking spots around
the city and the trips undertaken by drivers, including their origins, destinations, and
departure times. The data used to generate workloads is detailed below:

• Origin-Destination (OD) Survey: we created the simulated trips based
on the OD survey performed by the subway company of São Paulo7. This
survey describes the trips of 200,000 people and extrapolates the data to the
entire population of the city. The survey includes information on the origin,
destination, transportation mode, and departure time. We used this data to define
the behavior of car agents. To generate the load for the platform experiments,
we simulated the traffic in São Paulo during peak hours, from 5:40 am to 8:40
am. In the OD survey, there are 492,976 cars that start their trips during the
considered time interval.

• OpenStreet Maps: to create the city graph used in the simulation, we used
the map from OpenStreet Maps. This map contains all the streets and junctions
of the city, together with a number of attributes, such as length, capacity, and
speed limit. Such information is used by the simulator to define the routes taken
by cars as they perform their trips, as well as to simulate the impact of traffic
on the speed of cars.

• Parking Spots: we created the simulated parking spots based on data from
OpenStreet Maps and from Zona Azul8 (the rotary parking service of the city
of São Paulo).

7Origin-Destination Survey - http://goo.gl/Te2SX7
8http://www.cetsp.com.br/consultas/zona-azul/mapa-zona-azul/mapa-zona-azul.aspx

http://goo.gl/Te2SX7
http://www.cetsp.com.br/consultas/zona-azul/mapa-zona-azul/mapa-zona-azul.aspx

72

5 | SCALABILITY EVALUATION

To show the distribution of parking spaces and drivers destinations throughout
the city, Figure 5.4 presents two heat maps: (a) the simulated distribution of parking
spots across the city; and (b) the distribution of trip destinations throughout the
entire simulation. It is worth noting that parking spots with IoT infrastructure are
significantly more concentrated than trip destinations. This may lead to situations
where drivers do not find available parking spots after three attempts. In such cases,
the user agent stops using the application and finishes its execution.

(a) Parking spots distribution (b) Destinations distribution

Figure 5.4: Heat maps of the distributions of parking spots and car trip destinations in the
City of São Paulo

5.2.2 Experiment Configuration
Using the integrated environment described above, we performed a comprehensive

experiment to assess the scalability properties of the InterSCity platform. The
experiment consisted of: (I) running a production-like instance of the platform in
a cloud environment; (II) enabling an auto-scaling mechanism for the platform’s
microservices based on the variation of the workload; (III) setting up the simulator in
an isolated environment; (IV) starting the simulation of the Smart Parking scenario;
(V) monitoring the platform’s performance and its usage of the computational resources
during the entire simulation; and (VI) analyzing the obtained results.

To conduct the experiments, a production-like instance of the InterSCity platform
pre-populated with the resources available in the city (parking spots) and their
initial states (available) is required. Only the microservices Resource Catalog, Resource
Discovery, and Data Collector are used in the Smart Parking scenario.

We used Docker containers for InterSCity microservices and supporting services. In
all experiments we used the Google Cloud Platform9 (GCloud), which is an appropriate

9https://cloud.google.com

https://cloud.google.com

5.2 | EVALUATING THE LATEST INTERSCITY VERSION

73

infrastructure to run InterSCity in a production environment as the platform is a
cloud-native system. More specifically, we used the Kubernetes Engine, a set of tools
provided by GCloud based on Kubernetes, to schedule the deployment of containers
throughout a GCloud cluster. Among other tasks, we used Kubernetes to also automate
the restarting, replication, and scaling of containers. Thus, Kubernetes increases the
reproducibility of our experiments by ensuring the correct application of deployment
rules, configuration, and state. All the code used to perform the experiments, as well
as the Kubernetes configuration files, are publicly available in an online repository10.

We divided the cluster into 5 different node pools so that Kubernetes could schedule
the containers to the appropriate pools. Figure 5.5 presents these node pools and the
number and type of the machines used by each one on GCloud11. The Platform Pool
comprises 25 machines of type n1-standard-2 (2 virtual CPUs and 7.5GB of memory)
and runs both InterSCity microservices and Kong. There are three additional node
pools composed of n1-highmem-2 machines (2 virtual CPUs and 13GB of memory),
which execute the support services of the InterSCity environment. Both MongoDB
and PostgreSQL pools have 5 nodes running distributed, fault-tolerant instances of
their respective database systems, whereas RabbitMQ has a dedicated machine in
an isolated node. MongoDB is deployed using the replica set strategy12 to distribute
read operations among secondary nodes (slaves), although write operations are always
performed on the primary node (master). The same strategy is adopted for the
PostgreSQL instance for optimizing the read operations performed by the Resource
Catalog. Finally, the InterSCSimulator runs on its own n1-highmem-16 machine (16
virtual CPUs and 104GB of memory), isolated from the rest of the services.

Figure 5.5: Cluster Node Pools for the experiments

For the Platform Pool, Kubernetes may schedule several containers for the same
host depending on the available computational resources. The distribution of containers
across the 25 nodes may differ from one experiment to another and is a variable that
we did not control for during the performed experiments. To evaluate the impact of
such variations on the analysis, we repeated the experiment 15 times and studied the
variability of the results.

10https://github.com/LSS-USP/interscity-k8s-experiment
11https://cloud.google.com/compute/docs/machine-types
12https://docs.mongodb.com/manual/tutorial/deploy-replica-set

https://github.com/LSS-USP/interscity-k8s-experiment
https://cloud.google.com/compute/docs/machine-types
https://docs.mongodb.com/manual/tutorial/deploy-replica-set

74

5 | SCALABILITY EVALUATION

As we were interested in assessing the platform scalability considering a smart city
scenario with a varying workload, we used automatic scaling for the Resource Catalog,
Resource Discovery, Data Collector, and Kong services, as they are designed to scale
horizontally. For this purpose, we specified a target of 60% of CPU usage for each of
those services, enabling the system to increase or decrease the number of containers per
service. The system balances the workload to match the target CPU usage considering
the average CPU usage of the running containers, which is measured every 30 seconds.
Initially, each service has four containers, which is set as the minimum number of
running containers. This number may increase as long as computational resources are
available in the Platform node pool. We run the containers behind a load balancing
service.

Although we could benefit from GCloud’s elasticity properties by automatically
adding and removing nodes to our cluster using its auto-scaling feature, this would
introduce another level of uncertainty in our experiments, since in our experience the
time taken to create new VMs may vary considerably. Thus, we created all the nodes
in advance, before starting the experiments, keeping them running throughout the
experiment.

5.2.3 Scalability Analysis
To better analyze the behavior of the InterSCity platform, we ran multiple rounds

of the experiment. Our objective was to minimize the effects of uncontrollable variables
inherent to the environment in which the tests were performed, so as to evaluate
important aspects of the system and to ensure that the observed results are good
estimates for the general behavior of the system.

We performed a total of 15 rounds of the experiment. Each round ran for 3
hours, corresponding to the simulation of the morning peak traffic hours in São Paulo
according to the scenario described in Section 5.2.1. Figure 5.6 represents the average
workload generated by InterSCSimulator on the platform during the experiment and
the standard deviation (black lines on top of each bar). It is worth noting the constant
increase in the workload during the first 80 minutes. In the approximate interval
of one hour between 60 and 120 minutes, we observed the highest load period of
the experiment, whereas the maximum peak of requests happens after 80 minutes,
corresponding to more than 113,000 requests in 10 minutes. In total, more than one
million requests were performed to the platform during the experiment time. Since
fulfilling each of these requests requires a complex set of operations with multiple
internal steps, this translates to a very large computational load.

Figure 5.7 shows the dynamic creation and destruction of InterSCity containers due
to the application of the auto-scaling strategy in a single round. The initial replication
of Kong instances was enough to support the entire workload during the entire
experiment since it only performs the low-latency task of forwarding the incoming
requests to the proper microservices. In turn, the three InterSCity microservices,
which are truly responsible for handling the requests, were replicated according to
the increasing workload. Thus, the number of containers for these services varied
from 4 to 25. It is important to mention that the InterSCity elasticity mechanism
also reduced the number of containers as the demand decreased. As can be seen in

5.2 | EVALUATING THE LATEST INTERSCITY VERSION

75

Figure 5.6: Average workload generated by the InterSCSimulator

Figure 5.7, among the InterSCity microservices, Data Collector was the microservice
that consumed the least CPU time.

Figure 5.8 shows the average throughput of the InterSCity platform over the
duration of the experiment. The throughput is defined as the rate of successful
responses received by the simulator. The result indicates that the throughput closely
matches the generated workload, as can be seen by comparing Figures 5.6 and 5.8.
Despite the simulated variations in the drivers’ behavior throughout the experiment,
the platform was able to handle the varying demand thanks to its scalability and
autoscaling support features, described in Section 3.2. However, we should mention
that the throughput did not match the generated workload exactly, since some of the
requests failed, representing nearly 0.6% of all requests on average. Failed requests
include those which had responses with an HTTP error code, as well as those that
were not completed due to connection refusal or timeout. But we consider that being
able to handle over 99.5% of the requests under high load is satisfactory; a typical user
would see a failure every 200 requests, which is very good for this kind of real-time
smart urban application.

Another fundamental aspect of the system assessment is to analyze the performance
of the platform to handle application requests with a varying workload. In this respect,

76

5 | SCALABILITY EVALUATION

Figure 5.7: InterSCity services autoscaling

Figure 5.8: Average InterSCity throughput

5.2 | EVALUATING THE LATEST INTERSCITY VERSION

77

we are mainly interested in analyzing the performance degradation and verifying
whether the platform is scaling appropriately to serve its clients within acceptable
response times. For this purpose, we collected the response time from the client’s
point of view, as shown by Figure 5.9. During most of the experiment duration, the
platform was able to respond in less than one second. However, differently from the
throughput, the impact of the highest demand period on the observed response time
is noticeable since, during a small time interval (after 110 minutes of execution), the
average response time was greater than 1 second. The response time went back down
to 500 milliseconds after that. But, we can see that even in periods of high-load,
the response time was kept under 2s, which is an excellent result for this kind of
application.

Figure 5.9: InterSCity Average Response Time

We should recall that the distribution of containers on the available nodes may
impact the response time, as several containers may compete for computational
resources if they are running on the same host machine. Moreover, although the
system handles the autoscaling task every 30 seconds, we have no control over the
time it takes for a container to be scheduled and become ready to receive requests.
On the other hand, this distribution may also introduce a beneficial effect due to the
scheduling of services that constantly interact with each other to the same machine,
reducing network latency and unpredictability.

5.2.4 Threats to Validity and Limitations
In this section, we clarify and discuss some important aspects of our experiment

design as they may threaten the validity of our results and affect reproducibility. Most
of the threats are inherent to the environment where the experiments were carried
out, as there is considerable uncertainty concerning the provisioning of resources
and services in cloud environments (Tchernykh et al., 2015). As the Google Cloud

78

5 | SCALABILITY EVALUATION

Platform is not a controlled environment, it is impossible to have complete knowledge
of the system. For instance, we cannot correctly specify all properties related to the
communication network used within the cluster, such as network capacity, nor ensure
constant bandwidth. Such variables may directly impact results such as the observed
response time.

Although Kubernetes plays a crucial role in our experiments, it also raises some
concerns for their validation. Firstly, we do not control the way Kubernetes distributes
new containers across the available hosts of a node pool, except for the definition
of the minimum computing resource requirements for executing a specific container.
As a consequence, on each round of the experiment, Kubernetes may distribute
microservices differently, which may lead to a different load distribution among the
hosts in use. For instance, consider the case of a new container that has the minimum
requirement of 30% of available CPU and is allocated on a host whose CPU usage is
already at 60%. The container would probably have less CPU time than if it had been
allocated on a host with less competition for resources or, at least, manifest higher
latencies. Another important aspect regarding Kubernetes is the variation in the time
spent on scheduling new containers, especially in the auto-scaling task. In periods of
increased workload, the delay in the allocation of new containers may directly impact
the number of failed requests and the response time.

Finally, since we advocate for the use of more appropriate scenarios to test smart
city platforms, it is worth mentioning the aspects related to the realism of the smart city
simulations performed as part of the experiments. The conformance of the simulations
with real-world future smart cities scenarios depends on good models. In this sense,
the refinement of the models used to simulate car trips, as well as the behavior of
drivers in search for parking spots in a large city might change the workload generated
on the platform. Moreover, in addition to Smart Parking, it is essential to evaluate
the platform using other smart city scenarios, which may pose different demands and
require other functionalities, such as actuation on city resources.

79

Chapter 6

Conclusion

Smart city platforms play a key role in the development of future smart cities as
they support cross-domain solutions, interoperability among multiple city systems,
and resource and data sharing. However, due to various technical, practical, and
methodological challenges, the community still lacks robust solutions that can be
shared across smart city initiatives, as well as production environments to support
scientific validation of existing proposals.

Despite the existence of numerous smart city projects, developing architectures to
support city-scale environments and evaluating them is still challenging. In addition
to implementing a set of functionalities to support the development of applications,
smart city platforms must meet a number of important non-functional requirements.
In particular, the scalability and evolvability are critical for the wide adoption
of these platforms, and yet these characteristics are often ignored or superficially
addressed. Most of the works that propose a new smart city platform that supposedly
meets scalability requirements only present superficial discussions of design and
implementation decisions that can lead to a scalable architecture. Moreover, they
often do not provide scientific evidence of the feasibility of their approaches, but
restricted proofs-of-concept.

This masters’ research aimed at achieving both technical and scientific contributions
through the proposal of a novel microservice-based open source smart city platform
that provides facilities to build next-generation scalable smart city solutions and to
integrate heterogeneous IoT systems. In particular, our work brings the following
contributions:

• The initial design and implementation of the InterSCity platform

• Advances in the state-of-art by exploring the impact of a microservices
architecture in the design, development, and deployment of scalable smart
city platforms supported by experimental results and our early experience

• Advances in performance evaluation of smart city platforms with the use of a
simulation-based approach for workload generation and DevOps techniques for
reproducible experiments

Our early experience with the development of InterSCity shows that microservices
can be properly used to build smart city solutions providing finer-grained, single-
purpose building blocks that can be more easily and independently evolved compared

80

6 | CONCLUSION

to traditional SOA approaches. The loosely-coupled architecture provided by the
microservices approach enabled us to iteratively improve the InterSCity design
and implementation throughout the whole period of this research. However, it also
introduces new challenges due to an increase in the overall complexity that requires
the proper use of DevOps techniques, automated tests, and design patterns from the
beginning of the project.

We conducted two sets of experiments to validate the proposed platform. Despite
the limitations of our preliminary experiments, their results pointed towards the
applicability of our approach in the context of smart cities, since the platform were
able to support different scalability demands while keeping acceptable performance.

For the final evaluation of the InterSCity scalability properties, we adopted the
InterSCSimulator to generate a large-scale workload considering a realistic smart city
scenario. The experiment showed that InterSCity’s architecture is capable of scaling
up and down horizontally to handle a varying workload. More precisely, it was able
to handle more than one million complex requests during approximately 3 hours,
considering a Smart Parking scenario during São Paulo’s rush hour. Also, the platform
response time remained acceptable, mostly 1 second or below, even at the highest
demand time interval. We highlight the use of modern tools such as Kubernetes and
Docker containers as essential means to achieve these results.

Finally, we highlight that our open source and open science approach encourage
the community to leverage the contributions described in this work and to contribute
to the evolution of the field.

6.1 Future Work
Although we have evaluated the InterSCity scalability properties comprehensively,

we did not cover all of its functionalities. We need to perform further experiments
to continue exploring the scalability and performance properties of the platform,
mostly by considering other smart cities scenarios and features. Also, we still need
to advance more in methods and tools for evaluating smart city platforms to allow
comparison between several existing solutions. The InterSCity research community
advanced in this sense by using the InterSCSimulator to generate realistic workload to
evaluate such platforms. However, there are considerable challenges such as integrating
the simulator with other platforms. Other notable works in this area include the
RIoTBench(Shukla and Yogesh Simmhan, 2017), a real-time IoT benchmark for
distributed stream processing platforms, and the CityBench(Ali et al., 2015), which
is focused on the evaluation of RDF stream processing engines within smart city
applications.

There are still several open technical challenges regarding the InterSCity platform,
including: (I) meeting other critical non-functional requirements, such as security
and privacy; (II) extending the core functionalities to better support application
development; and (III) deploying a production instance of the platform on a real city.

Although InterSCity has a prototype of a visualization service for presenting the
city’s resources, there are several necessary improvements related to the visualization
of data. In addition, various issues related to usability and support for real-time
visualization should be considered in the evolution of this service. Moreover, although

6.1 | FUTURE WORK

81

the resource and capabilities abstractions are simple and flexible, they do not
contemplate several aspects of the city. For example, concepts such as streets and
neighborhoods are quite difficult to represent in the currently stage of the platform.
Another example is related to events that may occur in the city that, although they
can be identified by resources with sensor capabilities, they are not related to such
resources necessarily.

Regarding extending InterSCity’s functionalities, we believe two fundamental
aspects require priority: Integration of Static Resources and Big Data Processing. In
the following, we expose the main ideas on how to extend InterSCity in each of these
areas.

Integration of Static City Resources

Currently, InterSCity does not provide an appropriate way to serve static data
about city resources - resources without functional capabilities. For example, The city
hall of São Paulo provides an online visualization tool, called GeoSampa1, to represent
several layers of static city resources, including: the mapping of city facilities and
natural spaces, the political-administrative divisions, and mobility information. Each
of these resources has a set of specific attributes which could be used by different smart
city applications. Although it is possible to download the data used by GeoSampa,
there is no API available to access them in a standardized and automatic way. To
this end, we need to either improve the Resource Catalog or add a new microservice
to manage data from static resources through a NoSQL database. Thus, InterSCity
could support the discovery of static resources through Resource Discovery API and
the standard access to regular city resources abstraction provided by all other city
resources. Moreover, such work could also enhance the support for geolocation services
by adding support for GeoJSON format, described at RFC 7946 (Butler et al.,
2016), as it encodes a variety of geographic data structures and geometry types such
as:

• Point - represents a single point in the world based on coordinates. This is the
only format currently supported by InterSCity;

• LineString - represents a sequence of linked points. This data structure is
appropriate to describe paths, such as bus lines and bike paths;

• Polygon - represents a series of linked coordinates with four or more positions,
where the first and last positions are equivalent. Polygons are used to describe
the delimitations of neighborhoods, buildings, and public squares.

Big Data Processing

Sharing computational resources and reusable services across several applications
are some of the main purposes of building smart city platforms. More specifically, Big
Data services will be vital for future smart cities as they could potentially integrate
a large volume of data from different sources which must be timely processed to

1geosampa.prefeitura.sp.gov.br

82

6 | CONCLUSION

provide valuable outcomes for cities (Al Nuaimi et al., 2015). In this sense, add Big
Data support in the InterSCity platform is a major contribution that requires design
and implementation effort. To this end, InterSCity must address the following two
challenges: (I) implementing a generic, scalable and evolvable Big Data architecture
to enable both streaming and historical data processing; and (II) providing a reusable
service that can support several client applications’ requirements.

Among other possibilities, client applications could use the proposed Big Data
architecture to perform the following tasks:

• Creation of Composite Resources - composite resources are city resources whose
context data are the aggregation of observations of two or more city resources.
Composite resources must have a UUID and could be used to represent non-
physical resources from city. For example, a bus line could be modeled as a
composite resource that aggregates data from individual buses and stops, such
as average speed, number of stops, and average waiting time.

• Aggregation of Resource Observations - In some cases, client applications could
use Big Data services to access either aggregated or raw context data of city
resources to perform low latency queries. For instance, an application that needs
to retrieve the average speed of city roads every 30 seconds to propose faster
routes for drivers.

• Resource Observations Filtering - Applications could use the proposed data
processing service to filter events based on custom parameters in near real time
fashion, for example, an application that is only interested in the occurrences of
hospitalizations in the city’s hospitals whose specialty is "pediatrics".

83

Bibliografia

[Abbott and Fisher 2009] Martin L. Abbott and Michael T. Fisher. The Art
of Scalability: Scalable Web Architecture, Processes, and Organizations for the
Modern Enterprise. 1st. Addison-Wesley Professional, 2009. isbn: 0137030428,
9780137030422 (cit. on pp. 12, 13).

[Ali et al. 2015] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo.
“CityBench: A Configurable Benchmark to Evaluate RSP Engines Using
Smart City Datasets”. In: The Semantic Web - ISWC 2015: 14th Inter-
national Semantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part II. Cham: Springer International Publishing, 2015,
pp. 374–389. isbn: 978-3-319-25010-6. doi: 10.1007/978-3-319-25010-6_25.
url: http://dx.doi.org/10.1007/978-3-319-25010-6_25 (cit. on p. 80).

[Apolinarski et al. 2014] W. Apolinarski, U. Iqbal, and J. X. Parreira.
“The GAMBAS middleware and SDK for smart city applications”. In: 2014
IEEE International Conference on Pervasive Computing and Communication
Workshops (PERCOM WORKSHOPS). Mar. 2014, pp. 117–122. doi: 10.1109/
PerComW.2014.6815176 (cit. on p. 15).

[Al Nuaimi et al. 2015] Eiman Al Nuaimi, Hind Al Neyadi, Nader Mohamed,
and Jameela Al-Jaroodi. “Applications of big data to smart cities”. In:
Journal of Internet Services and Applications 6.1 (2015) (cit. on p. 82).

[Amaral et al. 2015] Leonardo Albernaz Amaral, Ramão Tiago Tiburski,
Everton de Matos, and Fabiano Hessel. “Cooperative Middleware Platform
As a Service for Internet of Things Applications”. In: Proceedings of the 30th
Annual ACM Symposium on Applied Computing. SAC ’15. Salamanca, Spain:
ACM, 2015, pp. 488–493. isbn: 978-1-4503-3196-8. doi: 10.1145/2695664.
2695799. url: http://doi.acm.org/10.1145/2695664.2695799 (cit. on p. 26).

[Batista et al. 2016] D. M. Batista et al. “InterSCity: Addressing Future Internet
Research Challenges for Smart Cities”. In: 7th International Conference on
the Network of the Future. IEEE, Nov. 2016 (cit. on pp. 5, 25).

[Bauer et al. 2013] Martin Bauer et al. Internet of Things – Architecture IoT-
A Deliverable D1.5 – Final architectural reference model for the IoT v3.0.
Tech. rep. July 2013 (cit. on p. 9).

https://doi.org/10.1007/978-3-319-25010-6_25
http://dx.doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1109/PerComW.2014.6815176
https://doi.org/10.1109/PerComW.2014.6815176
https://doi.org/10.1145/2695664.2695799
https://doi.org/10.1145/2695664.2695799
http://doi.acm.org/10.1145/2695664.2695799

84

BIBLIOGRAFIA

[Breivold et al. 2012] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus
Larsson. “A systematic review of software architecture evolution research”.
In: Information and Software Technology 54.1 (2012), pp. 16–40. issn: 0950-
5849. doi: http ://dx .doi . org/10 .1016/ j . infsof . 2011 .06 .002. url: http :
//www.sciencedirect.com/science/article/pii/S0950584911001376 (cit. on p. 11).

[Balalaie et al. 2016] A. Balalaie, A Heydarnoori, and P. Jamshidi. “Mi-
croservices Architecture Enables DevOps: Migration to a Cloud-Native
Architecture”. In: IEEE Software 33.3 (2016), pp. 42–52. issn: 0740-7459. doi:
doi.ieeecomputersociety.org/10.1109/MS.2016.64 (cit. on pp. 12, 35, 37).

[Bonino et al. 2015] D. Bonino et al. “ALMANAC: Internet of Things for Smart
Cities”. In: 2015 3rd International Conference on Future Internet of Things
and Cloud. Aug. 2015, pp. 309–316. doi: 10.1109/FiCloud.2015.32 (cit. on
p. 15).

[Bachani et al. 2016] Mamta Bachani, Umair Mujtaba Qureshi, and Faisal
Karim Shaikh. “Performance Analysis of Proximity and Light Sensors
for Smart Parking”. In: Procedia Computer Science 83 (2016). The 7th
International Conference on Ambient Systems, Networks and Technologies
(ANT 2016) / The 6th International Conference on Sustainable Energy
Information Technology (SEIT-2016) / Affiliated Workshops, pp. 385–392.
issn: 1877-0509. doi: http://dx.doi.org/10.1016/j.procs.2016.04.200. url:
http://www.sciencedirect.com/science/article/pii/S1877050916302332 (cit. on
p. 51).

[Bellabas et al. 2013] Alia Bellabas, Fano Ramparany, and Marylin Arndt.
“Fiware Infrastructure for Smart Home Applications”. In: Evolving Ambient
Intelligence. Ed. by Michael J. O’Grady et al. Cham: Springer International
Publishing, 2013, pp. 308–312. isbn: 978-3-319-04406-4 (cit. on p. 20).

[Butler et al. 2016] H. Butler et al. The GeoJSON Format. RFC 7946. RFC
Editor, "August" 2016. doi: 10.17487/RFC7946. url: https://tools.ietf.org/
html/rfc7946 (cit. on pp. 42, 81).

[Caragliu et al. 2009] A. Caragliu, C. Del Bo, and P. Nijkamp. “Smart Cities
in Europe”. In: Journal of Urban Technology 18(0048). Taylor & Franci, 2009,
pp. 45–59. doi: 10.1080/10630732.2011.601117 (cit. on p. 7).

[Cheng et al. 2015] Bin Cheng, Salvatore Longo, Flavio Cirillo, Martin
Bauer, and Ernoe Kovacs. “Building a Big Data Platform for Smart Cities:
Experience and Lessons from Santander”. In: Big Data (BigData Congress),
2015 IEEE International Congress on. IEEE. 2015, pp. 592–599 (cit. on p. 17).

[Cola et al. 2015] Simone Di Cola, Cuong Tran, Kung-Kiu Lau, Antonio
Celesti, and Maria Fazio. “A Heterogeneous Approach for Developing
Applications with FIWARE”. In: Service Oriented and Cloud Computing.

https://doi.org/http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://www.sciencedirect.com/science/article/pii/S0950584911001376
http://www.sciencedirect.com/science/article/pii/S0950584911001376
https://doi.org/doi.ieeecomputersociety.org/10.1109/MS.2016.64
https://doi.org/10.1109/FiCloud.2015.32
https://doi.org/http://dx.doi.org/10.1016/j.procs.2016.04.200
http://www.sciencedirect.com/science/article/pii/S1877050916302332
https://doi.org/10.17487/RFC7946
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://doi.org/10.1080/10630732.2011.601117

BIBLIOGRAFIA

85

Lecture Notes in Computer Science. Vol. 9306. Springer, Cham. 2015. doi:
https://doi.org/10.1007/978-3-319-24072-5_5 (cit. on pp. 20, 21).

[Dragoni et al. 2016] Nicola Dragoni et al. “Microservices: yesterday, today, and
tomorrow”. In: CoRR abs/1606.04036 (2016). url: http://arxiv.org/abs/1606.
04036 (cit. on pp. 11, 13, 14).

[Fazio et al. 2012] M. Fazio, M. Paone, A. Puliafito, and M. Villari.
“Heterogeneous Sensors Become Homogeneous Things in Smart Cities”. In:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
2012 Sixth International Conference on. July 2012, pp. 775–780. doi: 10.1109/
IMIS.2012.136 (cit. on pp. 2, 8, 26).

[Freire et al. 2012] Juliana Freire, Philippe Bonnet, and Dennis Shasha.
“Computational Reproducibility: State-of-the-art, Challenges, and Database
Research Opportunities”. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’12. Scottsdale,
Arizona, USA: ACM, 2012, pp. 593–596. isbn: 978-1-4503-1247-9. doi: 10.
1145/2213836.2213908. url: http://doi.acm.org/10.1145/2213836.2213908
(cit. on p. 3).

[Gopu et al. 2016] Arvind Gopu et al. “Trident: scalable compute archives:
workflows, visualization, and analysis”. In: vol. 9913. 2016, 99131H-99131H-12.
doi: 10.1117/12.2233111. url: http://dx.doi.org/10.1117/12.2233111 (cit. on
p. 14).

[González and Rossi 2011] J. A. González and A. Rossi. New trends for smart
cities, open innovation Mechanism in Smart Cities. Tech. rep. European
commission within the ICT policy support programme, 2011 (cit. on p. 7).

[Hernández-Muñoz et al. 2011] José M. Hernández-Muñoz et al. “The Future
Internet”. In: ed. by John Domingue, Alex Galis, Anastasius Gavras,
Theodore Zahariadis, and Dave Lambert. Berlin, Heidelberg: Springer-
Verlag, 2011. Chap. Smart Cities at the Forefront of the Future Internet,
pp. 447–462. isbn: 978-3-642-20897-3. url: http://dl.acm.org/citation.cfm?
id=1983741.1983773 (cit. on pp. 2, 8, 26).

[Hummer et al. 2013] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira,
and Tamar Eilam. “Testing Idempotence for Infrastructure as Code”. In:
Middleware 2013. Ed. by David Eyers and Karsten Schwan. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 368–388. isbn: 978-3-642-
45065-5 (cit. on p. 38).

[Hohpe and Woolf 2003] Gregor Hohpe and Bobby Woolf. Enterprise Inte-
gration Patterns: Designing, Building, and Deploying Messaging Solutions.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003. isbn:
0321200683 (cit. on p. 34).

https://doi.org/https://doi.org/10.1007/978-3-319-24072-5_5
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
https://doi.org/10.1109/IMIS.2012.136
https://doi.org/10.1109/IMIS.2012.136
https://doi.org/10.1145/2213836.2213908
https://doi.org/10.1145/2213836.2213908
http://doi.acm.org/10.1145/2213836.2213908
https://doi.org/10.1117/12.2233111
http://dx.doi.org/10.1117/12.2233111
http://dl.acm.org/citation.cfm?id=1983741.1983773
http://dl.acm.org/citation.cfm?id=1983741.1983773

86

BIBLIOGRAFIA

[ISO 1988] ISO. ISO 8601:1988. Data elements and interchange formats —
Information interchange — Representation of dates and times. Geneva,
Switzerland: International Organization for Standardization, 1988, p. 14.
url: http://www.iso.ch/cate/d26780.html (cit. on p. 45).

[Joy 2015] A. M. Joy. “Performance comparison between Linux containers and
virtual machines”. In: 2015 International Conference on Advances in Computer
Engineering and Applications. Mar. 2015, pp. 342–346. doi: 10.1109/ICACEA.
2015.7164727 (cit. on p. 38).

[Krylovskiy et al. 2015] A. Krylovskiy, M. Jahn, and E. Patti. “Designing
a Smart City Internet of Things Platform with /Microservice Architecture”.
In: Future Internet of Things and Cloud (FiCloud), 2015 3rd International
Conference on. Aug. 2015, pp. 25–30. doi: 10.1109/FiCloud.2015.55 (cit. on
pp. 3, 21, 22).

[Le et al. 2015] V. D. Le et al. “Microservice-based architecture for the NRDC”. In:
2015 IEEE 13th International Conference on Industrial Informatics (INDIN).
July 2015, pp. 1659–1664. doi: 10.1109/INDIN.2015.7281983 (cit. on p. 14).

[Lewis and Fowler 2014] James Lewis and Martin Fowler. Microservices: a
definition of this new architectural term. 2014. url: https://martinfowler.com/
articles/microservices.html (visited on 03/06/2017) (cit. on pp. 11, 12, 14).

[Leach et al. 2005] Paul J. Leach, Michael Mealling, and Rich Salz. A
Universally Unique IDentifier (UUID) URN Namespace. RFC 4122. http:
//www.rfc-editor.org/rfc/rfc4122.txt. RFC Editor, July 2005 (cit. on p. 30).

[Moura et al. 2016] P. Moura, F. Kon, S. Voulgaris, and M. van Steen.
“Dynamic resource allocation using performance forecasting”. In: 2016
International Conference on High Performance Computing Simulation (HPCS).
July 2016, pp. 18–25. doi: 10.1109/HPCSim.2016.7568311 (cit. on p. 38).

[Nations 2014] United Nations. World Urbanization Prospects: The 2014 Revi-
sion. Tech. rep. ST/ESA/SER.A/352. New York: Department of Economic
and Social Affairs of the United Nations, 2014 (cit. on p. 1).

[Neirotti et al. 2014] P. Neirotti, A. De Marco, A. C. Cagliano,
G. Mangano, and F. Scorrano. “Current trends in Smart City
initiatives: Some stylised facts”. In: Cities 38 (2014), pp. 25–36. doi:
10.1016/j.cities.2013.12.010. url: http://dx.doi.org/10.1016/j.cities.2013.12.010
(cit. on pp. 1, 7).

[Newman 2015] S Newman. Building Microservices. O’Reilly Media, 2015. isbn:
978-1-4919-5035-7 (cit. on pp. 11, 12, 37).

[Partridge 2004] Helen L. Partridge. “Developing a human perspective to the
digital divide in the ’smart city’”. In: Australian Library and Information

http://www.iso.ch/cate/d26780.html
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/FiCloud.2015.55
https://doi.org/10.1109/INDIN.2015.7281983
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.rfc-editor.org/rfc/rfc4122.txt
http://www.rfc-editor.org/rfc/rfc4122.txt
https://doi.org/10.1109/HPCSim.2016.7568311
https://doi.org/10.1016/j.cities.2013.12.010
http://dx.doi.org/10.1016/j.cities.2013.12.010

BIBLIOGRAFIA

87

Association Biennial Conference. Ed. by Helen Partridge. Gold Coast,
Queensland, Australia, 2004. url: http://eprints.qut.edu.au/1299/ (cit. on
p. 7).

[PCAST 2016] PCAST. Technology and the Future of Cities, Report To The
President. Tech. rep. Executive Office of the President, United States, Feb.
2016, p. 99. url: https://www.whitehouse.gov/sites/whitehouse.gov/files/
images/Blog/PCAST%5C%20Cities%5C%20Report%5C%20_%5C%20FINAL.
pdf (cit. on p. 2).

[Peng 2011] Roger D. Peng. “Reproducible Research in Computational Science”.
In: Science 334.6060 (2011), pp. 1226–1227. issn: 0036-8075. doi: 10.1126/
science.1213847. eprint: http://science.sciencemag.org/content/334/6060/1226.
full.pdf. url: http://science.sciencemag.org/content/334/6060/1226 (cit. on
p. 3).

[Perera et al. 2014] C. Perera, A. Zaslavsky, P. Christen, and D. Geor-
gakopoulos. “Context Aware Computing for The Internet of Things: A
Survey”. In: IEEE Communications Surveys Tutorials 16.1 (First 2014),
pp. 414–454. issn: 1553-877X. doi: 10.1109/SURV.2013.042313.00197 (cit. on
p. 9).

[Pereira et al. 2018] Carlos Pereira, João Cardoso, Ana Aguiar, and Ricardo
Morla. “Benchmarking Pub/Sub IoT middleware platforms for smart
services”. In: Journal of Reliable Intelligent Environments 4.1 (Apr. 2018),
pp. 25–37. issn: 2199-4676. doi: 10.1007/s40860-018-0056-3. url: https:
//doi.org/10.1007/s40860-018-0056-3 (cit. on p. 21).

[Salhofer 2018] Peter Salhofer. “Evaluating the FIWARE Platform: A Case-
Study on Implementing Smart Application with FIWARE”. In: Proceedings of
the 51st Hawaii International Conference on System Sciences. 2018, pp. 5797–
5805. doi: 10.24251/HICSS.2018.726. url: http://hdl.handle.net/10125/50615
(cit. on p. 20).

[L. Sanchez et al. 2011] L. Sanchez et al. “SmartSantander: The meeting point
between Future Internet research and experimentation and the smart cities”.
In: 2011 Future Network Mobile Summit. June 2011, pp. 1–8 (cit. on p. 3).

[Luis Sanchez et al. 2014] Luis Sanchez et al. “SmartSantander: IoT experi-
mentation over a smart city testbed”. In: Computer Networks 61 (2014).
Special issue on Future Internet Testbeds ¿ Part I, pp. 217–238. issn: 1389-
1286. doi: http : / / dx . doi . org / 10 . 1016 / j . bjp . 2013 . 12 . 020. url: http :
//www.sciencedirect.com/science/article/pii/S1389128613004337 (cit. on p. 16).

[E. F. Z. Santana et al. 2017] E. F. Z. Santana, N. Lago, F. Kon, and D. S.
Milojicic. “InterSCSimulator: Large-Scale Traffic Simulation in Smart Cities
using Erlang”. In: 18th Workshop on Multi-agent-based Simulation (MABS).
2017 (cit. on p. 70).

http://eprints.qut.edu.au/1299/
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/PCAST%5C%20Cities%5C%20Report%5C%20_%5C%20FINAL.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/PCAST%5C%20Cities%5C%20Report%5C%20_%5C%20FINAL.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/PCAST%5C%20Cities%5C%20Report%5C%20_%5C%20FINAL.pdf
https://doi.org/10.1126/science.1213847
https://doi.org/10.1126/science.1213847
http://science.sciencemag.org/content/334/6060/1226.full.pdf
http://science.sciencemag.org/content/334/6060/1226.full.pdf
http://science.sciencemag.org/content/334/6060/1226
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1007/s40860-018-0056-3
https://doi.org/10.1007/s40860-018-0056-3
https://doi.org/10.1007/s40860-018-0056-3
https://doi.org/10.24251/HICSS.2018.726
http://hdl.handle.net/10125/50615
https://doi.org/http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://www.sciencedirect.com/science/article/pii/S1389128613004337
http://www.sciencedirect.com/science/article/pii/S1389128613004337

88

BIBLIOGRAFIA

[Santana et al. 2017] Santana, A. P. Chaves, M. A. Gerosa, F. Kon, and D. S.
Milojicic. “Software Platforms for Smart Cities: Concepts, Requirements,
Challenges, and a Unified Reference Architecture”. In: ACM Computing
Surveys 50.6 (Nov. 2017), 78:1–78:37. issn: 0360-0300. url: http://doi.acm.
org/10.1145/3124391 (cit. on pp. 2–4, 8, 10, 25).

[Serrano et al. 2015] M. Serrano et al. IoT Semantic Interoperability: Research
Challenges, Best Practices, Recommendations and Next Step. Tech. rep. Mar.
2015 (cit. on pp. 9, 10).

[Silva et al. 2013] Welington M. Silva et al. “Smart Cities Software Architectures:
A Survey”. In: Proceedings of the 28th Annual ACM Symposium on Applied
Computing. SAC ’13. Coimbra, Portugal: ACM, 2013, pp. 1722–1727. isbn:
978-1-4503-1656-9. doi: 10.1145/2480362.2480688. url: http://doi.acm.org/
10.1145/2480362.2480688 (cit. on p. 8).

[Soldatos et al. 2015] John Soldatos et al. “OpenIoT: Open Source Internet-
of-Things in the Cloud”. In: Interoperability and Open-Source Solutions for
the Internet of Things: International Workshop, FP7 OpenIoT Project, Held
in Conjunction with SoftCOM 2014, Split, Croatia, September 18, 2014,
Invited Papers. Ed. by Ivana Podnar Žarko, Krešimir Pripužić, and
Martin Serrano. Cham: Springer International Publishing, 2015, pp. 13–25.
isbn: 978-3-319-16546-2. doi: 10.1007/978-3-319-16546-2_3. url: http:
//dx.doi.org/10.1007/978-3-319-16546-2_3 (cit. on p. 15).

[Steinmetz et al. 2017] C. Steinmetz et al. “Ontology-driven IoT code genera-
tion for FIWARE”. In: 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN). July 2017, pp. 38–43. doi: 10.1109/INDIN.2017.8104743
(cit. on p. 20).

[Shukla and Yogesh Simmhan 2017] Anshu Shukla and Shilpa Chaturvedi
and Yogesh Simmhan. “RIoTBench: A Real-time IoT Benchmark for
Distributed Stream Processing Platforms”. In: CoRR abs/1701.08530 (2017).
url: http://arxiv.org/abs/1701.08530 (cit. on p. 80).

[Taibi 2013] Fathi Taibi. “Reusability of Open-source Program Code: A Concep-
tual Model and Empirical Investigation”. In: SIGSOFT Softw. Eng. Notes
38.4 (July 2013), pp. 1–5. issn: 0163-5948. doi: 10.1145/2492248.2492276.
url: http://doi.acm.org/10.1145/2492248.2492276 (cit. on p. 26).

[Tchernykh et al. 2015] Andrei Tchernykh, Uwe Schwiegelsohn, Vassil
Alexandrov, and El-ghazali Talbi. “Towards Understanding Uncertainty
in Cloud Computing Resource Provisioning”. In: Procedia Computer Science
51 (2015). International Conference On Computational Science, ICCS 2015,
pp. 1772–1781. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2015.05.
387. url: http://www.sciencedirect.com/science/article/pii/S1877050915011953
(cit. on p. 77).

http://doi.acm.org/10.1145/3124391
http://doi.acm.org/10.1145/3124391
https://doi.org/10.1145/2480362.2480688
http://doi.acm.org/10.1145/2480362.2480688
http://doi.acm.org/10.1145/2480362.2480688
https://doi.org/10.1007/978-3-319-16546-2_3
http://dx.doi.org/10.1007/978-3-319-16546-2_3
http://dx.doi.org/10.1007/978-3-319-16546-2_3
https://doi.org/10.1109/INDIN.2017.8104743
http://arxiv.org/abs/1701.08530
https://doi.org/10.1145/2492248.2492276
http://doi.acm.org/10.1145/2492248.2492276
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.387
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.387
http://www.sciencedirect.com/science/article/pii/S1877050915011953

BIBLIOGRAFIA

89

[Villanueva et al. 2013] F. J. Villanueva, M. J. Santofimia, J. Barba, and
J. C. Lópes. “Civitas: The Smart City Middleware, from Sensors to Big
Data”. In: Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS). 2013, pp. 445–450 (cit. on pp. 1, 2, 8, 15).

	Introduction
	Motivation
	Objectives and Contributions

	Background and Related Work
	Smart City Platforms
	Microservices Architecture
	Smart City Projects

	The InterSCity Platform
	Design Principles
	Platform Architecture
	Design Details to Address Scalability
	Functional Decomposition
	Communication Style
	Design and Technology Heterogeneity
	Independent Deployment

	Microservices
	Resource Adaptor
	Resource Catalog
	Data Collector
	Actuator Controller
	Resource Discovery

	Implementation Principles
	Application Life-cycle
	Smart Parking App
	São Paulo Health Dashboard
	SancaLights
	Recomenda SP

	Scalability-seeking Experimental Method
	Improvement Cycles of the First Round
	Improvement Cycles of the Second Round

	Scalability Evaluation
	Evaluating the Preliminary InterSCity Version
	Degradation Analysis
	Scalability Analysis
	Threats to Validity and Limitations

	Evaluating the Latest InterSCity Version
	Smart City Scenario
	Experiment Configuration
	Scalability Analysis
	Threats to Validity and Limitations

	Conclusion
	Future Work

	Bibliografia

